Dependency graph

In mathematics, computer science and digital electronics, a dependency graph is a directed graph representing dependencies of several objects towards each other. It is possible to derive an evaluation order or the absence of an evaluation order that respects the given dependencies from the dependency graph.

Definition

Given a set of objects S and a transitive relation R \subseteq S \times S with (a,b) \in R modeling a dependency "a needs b evaluated first", the dependency graph is a graph G = (S, T) with T \subseteq R and R being the transitive closure of T.

For example, assume a simple calculator. This calculator supports assignment of constant values to variables and assigning the sum of exactly 2 variables to a third variable. Given several equations like "A = B+C; B = 5+D; C=4; D=2;", then S={A,B,C,D} and R={(A,B),(A,C),(B,D)}. You can derive this relation directly: A depends on B and C, because you can add two variables if and only if you know the values of both variables. Thus, B and C must be calculated before A can be calculated. However, D's value is known immediately, because it is a number literal.

Recognizing impossible evaluations

In a dependency graph, the cycles of dependencies (also called circular dependencies) lead to a situation in which no valid evaluation order exists, because none of the objects in the cycle may be evaluated first. If a dependency graph does not have any circular dependencies, it forms a directed acyclic graph, and an evaluation order may be found by topological sorting. Most topological sorting algorithms are also capable of detecting cycles in their inputs, however, it may be desirable to perform cycle detection separately from topological sorting in order to provide appropriate handling for the detected cycles.

Assume the simple calculator from before. The equation system "A=B; B=D+C; C=D+A; D=12;" contains a circular dependency formed by A, B and C, as B must be evaluated before A, C must be evaluated before B and A must be evaluated before C.

Deriving an evaluation order

A correct evaluation order is a numbering  n : S \rightarrow \mathbb{N} of the objects that form the nodes of the dependency graph so that the following equation holds:  n(a) < n(b) \Rightarrow (a, b) \notin R with  a, b \in S. This means, if the numbering orders two elements a and b so that a will be evaluated before b, then a must not depend on b. Furthermore, there can be more than a single correct evaluation order. In fact, a correct numbering is a topological order, and any topological order is a correct numbering. Thus, any algorithm that derives a correct topological order derives a correct evaluation order.

Assume the simple calculator from above once more. Given the equation system "A = B+C; B = 5+D; C=4; D=2;", a correct evaluation order would be (D, C, B, A). However, (C, D, B, A) is a correct evaluation order as well.

Examples

Dependency graphs are used in:

Dependency graphs are one aspect of:

See also

References

This article is issued from Wikipedia - version of the Friday, April 29, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.