Desmic system

Two desmic tetrahedra. The third tetrahedron of this system is not shown, but has one vertex at the center and the other three on the plane at infinity.
The Reye configuration with the same 12 vertices as a desmic system

In projective geometry, a desmic system is a set of three tetrahedra in 3-dimensional projective space, such that any two are desmic, (i.e. related such that each edge of one cuts a pair of opposite edges of the other). It was introduced by Stephanos (1879). The three tetrahedra of a desmic system are contained in a pencil of quartic surfaces. The name "desmic" comes from the Greek word δεσμός, meaning band or chain, referring to the pencil of quartics.

Every line that passes through two vertices of two tetrahedra in the system also passes through a vertex of the third tetrahedron. The 12 vertices of the desmic system and the 16 lines formed in this way are the points and lines of a Reye configuration.

Example

The three tetrahedra given by the equations

form a desmic system, contained in the pencil of quartics

for a + b + c = 0.

References

External links

This article is issued from Wikipedia - version of the Tuesday, September 23, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.