Determinant identities

In mathematics the determinant is an operator which has certain useful identities.

Identities

\det(I_n) = 1 where In is the n × n identity matrix.

\det(A^{\rm T}) = \det(A).

\det(A^{-1}) = \frac{1}{\det(A)}=\det(A)^{-1}.

For square matrices A and B of equal size,

\det(AB) = \det(A)\det(B).

\det(cA) = c^n\det(A) for an n × n matrix.

If A is a triangular matrix, i.e. ai,j = 0 whenever i > j or, alternatively, whenever i < j, then its determinant equals the product of the diagonal entries: \det(A) =  a_{1,1} a_{2,2} \cdots a_{n,n} = \prod_{i=1}^n a_{i,i}.

Schur complement

The following identity holds for a Schur complement of a square matrix:

The Schur complement arises as the result of performing a block Gaussian elimination by multiplying the matrix M from the right with the "block lower triangular" matrix

L=\left[\begin{matrix} I_p & 0 \\ -D^{-1}C & I_q \end{matrix}\right].

Here Ip denotes a p×p identity matrix. After multiplication with the matrix L the Schur complement appears in the upper p×p block. The product matrix is


\begin{align}
ML &= \left[\begin{matrix} A & B \\ C & D \end{matrix}\right]\left[\begin{matrix} I_p & 0 \\ -D^{-1}C & I_q \end{matrix}\right] = \left[\begin{matrix} A-BD^{-1}C & B \\ 0 & D \end{matrix}\right] \\
&= \left[\begin{matrix} I_p & BD^{-1} \\ 0 & I_q \end{matrix}\right] \left[\begin{matrix} A-BD^{-1}C & 0 \\ 0 & D \end{matrix}\right].
\end{align}

That is, we have shown that


\begin{align}
\left[\begin{matrix} A & B \\ C & D \end{matrix}\right] &= \left[\begin{matrix} I_p & BD^{-1} \\ 0 & I_q \end{matrix}\right] \left[\begin{matrix} A-BD^{-1}C & 0 \\ 0 & D \end{matrix}\right]
\left[ \begin{matrix} I_p & 0 \\ D^{-1}C & I_q \end{matrix}\right],
\end{align}
This article is issued from Wikipedia - version of the Friday, June 19, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.