Determinant identities
In mathematics the determinant is an operator which has certain useful identities.
Identities
where In is the n × n identity matrix.


For square matrices A and B of equal size,
for an n × n matrix.
If A is a triangular matrix, i.e. ai,j = 0 whenever i > j or, alternatively, whenever i < j, then its determinant equals the product of the diagonal entries:

Schur complement
The following identity holds for a Schur complement of a square matrix:
The Schur complement arises as the result of performing a block Gaussian elimination by multiplying the matrix M from the right with the "block lower triangular" matrix
Here Ip denotes a p×p identity matrix. After multiplication with the matrix L the Schur complement appears in the upper p×p block. The product matrix is
That is, we have shown that

![L=\left[\begin{matrix} I_p & 0 \\ -D^{-1}C & I_q \end{matrix}\right].](../I/m/c7f5769da89379638d765ec3258a8ccd.png)
![\begin{align}
ML &= \left[\begin{matrix} A & B \\ C & D \end{matrix}\right]\left[\begin{matrix} I_p & 0 \\ -D^{-1}C & I_q \end{matrix}\right] = \left[\begin{matrix} A-BD^{-1}C & B \\ 0 & D \end{matrix}\right] \\
&= \left[\begin{matrix} I_p & BD^{-1} \\ 0 & I_q \end{matrix}\right] \left[\begin{matrix} A-BD^{-1}C & 0 \\ 0 & D \end{matrix}\right].
\end{align}](../I/m/030cadfbde90d399cc087e467d41f677.png)