Dextroscope

The Dextroscope is a Virtual Reality (VR) environment designed to provide medical professionals with deeper understanding of a patient's complex 3D anatomical relationships and pathology. Although its main intended purpose is to enable surgeons to plan a surgical procedure (in particular, neurosurgery[1]), it has also proven useful in research in cardiology[2] ,[3] radiology and medical education.[4]

The Dextroscope allows its user to interact intuitively with a Virtual Patient. The Virtual Patient is composed of computer-generated 3D multi-modal images obtained from any DICOM tomographic data including CT, MRI, MRA, MRV, functional MRI and CTA, PET, SPECT and DTI. It can work with any multi-modality combination, supporting polygonal meshes as well.

The user sits at the Dextroscope 3D interaction console and manipulates the Virtual Patient using both hands in a similar manner to how one would manipulate a real object. Using stereoscopic visualisations displayed via a mirror, the Dextroscope user sees the Virtual Patient floating behind the mirror but within easy reach of the hands and uses flexible 3D hand movements to rotate and manipulate the object of interest. The Dextroscope allows virtual segmentation of organs and structures, making accurate 3D measurements, etc.

In one hand the user holds an ergonomically shaped handle with a switch that, when pressed, allows the 3D image to be moved freely as if it were an object held in real space. The other hand holds a pencil shaped stylus that is used to select tools from a virtual control panel and perform detailed manipulations and operations on the 3D image. The user does not see the stylus, handle or his/her hands directly, as they are hidden behind the surface of the mirror. Instead he/she sees a virtual handle and stylus calibrated to appear in exactly the same position as the real handle and stylus. The business end of the virtual handle can be selected to be anything that the software can create - drill tool, measurement tool, cutter, etc. Experience has shown that it is unnecessary to model the user's hands, provided that he/she can see and feel the real tools and that these perceptions match the virtual scene. This is highly advantageous since the hands would otherwise clutter the workspace and obscure the view of the object of interest.[5]

One of the uses of the Dextroscope is to allow surgeons to interact with and manipulate the Virtual Patient and plan the ideal surgical trajectory - for example, by simulating inter-operative viewpoints or the removal of bone and soft tissue. Apart from being much faster to work this way than using a mouse and keyboard, this approach also provides the medical professional, typically a surgeon, with a greater degree of control over the 3D image - with the hands literally being able to reach inside to manipulate the image interior.

Manipulating the Virtual Patient – Virtual Reality Toolsets

The Dextroscope provides an extensive set of virtual tools that can be used to manipulate the 3D image. For example, there are dedicated tools to perform data segmentation to extract surgically relevant structures like the cortex or a tumor ,[6] extract blood vessels,[7] adjust the color and transparency of displayed structures to see deep inside the patient and even simulate some surgical procedures – such as the removal of bone using a simulated skull drilling tool.

Typical structures that can be segmented are tumors, blood vessels, aneurysms, parts of the skull base, and organs. Segmentation is done either automatically (when the structures are demarcated clearly by their outstanding image intensity - such as the cortex) or through user interaction (using for example an outlining tool to define the extent of the structure manually). A virtual ‘pick’ tool allows the user to pick a segmented object and uncouple it from its surroundings for closer inspection. A measurement tool provides accurate measurement of straight and curving 3D structures such as the scalp, and measure angles, such as those between vessels or bony structures (for example, when planning the insertion of a screw into the spine).

Neurosurgery Planning - Case Studies and Evaluations

The use of the Dextroscope has been reported for several neurosurgical clinical scenarios;[1] [8] [9]

Screen Capture from the Dextroscope. This image shows a moment during the planning of a typical neurosurgical procedure involving an MRI, DTI, TMS data modalities.

- cerebral arteriovenous malformations[10] [11]

- aneurysms[12] [13] [14]

- cranial nerve decompression (in cases of trigeminal neuralgia and hemifacial spasm)[15] [16] [17]

- meningiomas (convexity, falcine or parasagittal)[18] [19] [20]

- ependymomas or subependymomas [12] [21]

- craniopagus twin separation[22] [23]

- transnasal approaches[24] [25] [26]

- key-hole approaches[27] [28] [29]

- epilepsy[30]

- and a great variety of deep-brain and skull base tumors[31][32] (pituitary adenomas, craniopharyngiomas, arachnoid cysts, colloid cysts, cavernomas[33] ,[34] hemangioblastomas, chordomas, epidermoids, gliomas,[35] jugular schwannomas, aqueductal stenosis, stenosis of Monro foramen, hippocampal sclerosis).[12] [36] [37] [38]

Not only brain, but also spine pathology such as cervical spine fractures, syringomyelia, and sacral nerve root neurinomas have been evaluated.[39]

For other uses of the Dextroscope in neurosurgery refer to [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] .[52]

Other surgical specialties

The Dextroscope has been applied also outside of neurosurgery to benefit any patient presenting a surgical challenge: an anatomical or structural complexity that requires planning of the surgical (or interventional) approach, for example, ENT[53] orthopedic, trauma and cranio-facial [54] [55] [56] [57] ,[58] cardiology[59] and liver surgery. [60] [61]

Dextroscope and Diagnostic Imaging

Dextroscope is not just for surgeons - radiologists can benefit from it too. The rapid growth in multi-modal diagnostic imaging data routinely available has increased their workload tremendously. Using the Dextroscope, radiologists can reconstruct multimodal models from high volumes of 2D slices – hence facilitating a better understanding of the 3D anatomical structures and helping with the diagnosis.

Furthermore, the Dextroscope virtual reality environment helps bridge the gap between radiology and surgery - by allowing the radiologist to easily demonstrate to surgeons important 3D structures in a way that surgeons are familiar with.
This demonstration capabilities makes it also useful as a base for medical educators where to convey 3D information to students.[62] In order to reach larger group of people in a classroom or auditorium, a version was manufactured called Dextrobeam.[63]


The Dextroscope (and/or the Dextrobeam) was installed, (among other medical and research institutions) at:

Medical/Research Institution Main Use
Hirslanden Hospital (Zurich, Switzerland) Neurosurgery
St Louis University Hospital (St Louis, USA) Neurosurgery
Stanford University Medical Center (San Francisco, USA) Neurosurgery & Craniomaxillofacial Surgery
Johns Hopkins Hospital (Baltimore, USA) Radiology Research
Rutgers New Jersey Medical School (Newark, USA) Neurosurgery, ENT
Hospital of the University of Pennsylvania (Philadelphia, USA) Neurosurgery & Cardiovascular Radiology
Weill Cornell Brain and Spine Center (New York, USA) Neurosurgery
Johannes Gutenberg University Hospital (Mainz, Germany) Neurosurgery & Medical Education
Hospital del Mar (Barcelona, Spain) Neurosurgery
Université Catholique de Louvain, Cliniques Universitaires St-Luc (Brussels, Belgium) Neurosurgery
Istituto Neurologico C. Besta (Milan, Italy) Neurosurgery
Royal London Hospital (London, UK) Neurosurgery
Faculty of Medicine, University of Barcelona (Barcelona, Spain) Neurosurgery Research & Neuroanatomy
Inselpital (Bern, Switzerland) ENT
School of Medicine, University of Split (Split, Croatia) Neurophysiology Research
National Neuroscience Institute (Singapore) Neurosurgery
SINAPSE Institute (Singapore) Neurosurgery Research
Prince of Wales Hospital (Hong Kong) Neurosurgery & Orthopedics
Hua Shan Hospital (Shanghai, China) Neurosurgery
ChongQing 3rd Military Hospital (Chong Qing, China) Medical Education
Advanced Surgery Training Centre of the National University Hospital (Singapore) Medical Education
Fujian Medical University (Fuzhou, China) Neurosurgery & Maxillofacial Surgery

The Dextroscope and Dextrobeam were a product of Volume Interactions Pte Ltd (a member of the Bracco Group), a company spun-off from the Kent Ridge Digital Labs research institute in Singapore. They received FDA 510(k) clearance and CE Marking.

References

  1. 1 2 Kockro, R.A.; Serra, L.; Tseng-Tsai, Y.; Chan, C.; Yih-Yian, S.; Gim-Guan, C.; Lee, E.; Hoe, L.Y.; Hern, N.; Nowinski, W.L. (2000). "Planning and simulation of neurosurgery in a virtual reality environment". Neurosurgery 46: 118–135. doi:10.1097/00006123-200001000-00024.
  2. Fu, Yingli (2010). "MRI and CT Tracking of Mesenchymal Stem Cells with Novel Perfluorinated Alginate Microcapsules". Journal of Cardiovascular Magnetic Resonance 12: O14. doi:10.1186/1532-429X-12-S1-O14.
  3. Kraitchman, Dara L. (Sep 6, 2005). "Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction". Circulation 112: 1451–1461. doi:10.1161/CIRCULATIONAHA.105.537480.
  4. Liu, Kaijun (Sep 2013). "Anatomical education and surgical simulation based on the Chinese Visible Human: a three-dimensional virtual model of the larynx region". Anatomical Science International 88: 254–8. doi:10.1007/s12565-013-0186-x. PMID 23801001.
  5. Poston, T., Serra, L., 1996. Dextrous Virtual Work. Commun. ACM 39, 37–45. doi:10.1145/229459.229464
  6. Chia, W.K.; Serra, L. (2006). "Contouring in 2D while viewing stereoscopic 3D volumes". Stud Health Technol Inform 119: 93–95.
  7. Serra, L., Hern, N., Choon, C.B., Poston, T., 1997. Interactive vessel tracing in volume data, in: Proceedings of the 1997 Symposium on Interactive 3D Graphics, I3D ’97. ACM, New York, NY, USA, p. 131–ff. doi:10.1145/253284.253320
  8. Matis, G.K.; Silva, D.O. de A.; Chrysou, O.I.; Karanikas, M.; Pelidou, S.-H.; Birbilis, T.A.; Bernardo, A.; Stieg, P. (2013). "Virtual reality implementation in neurosurgical practice: the"can't take my eyes off you" effect". Turk Neurosurg 23: 690–691.
  9. Ferroli, P.; Tringali, G.; Acerbi, F.; Aquino, D.; Franzini, A.; Broggi, G. (2010). "Brain surgery in a stereoscopic virtual reality environment: a single institution's experience with 100 cases". Neurosurgery 67: 79–84. doi:10.1227/01.NEU.0000383133.01993.96.
  10. Ng I, Hwang PY, Kumar D, Lee CK, Kockro RA, Sitoh YY: Surgical planning for microsurgical excision of cerebral arteriovenous malformations using virtual reality technology. Acta Neurochir (Wien) 151: , 2009
  11. Wong GK, Zhu CX, Ahuja AT, Poon WS: Stereoscopic virtual reality simulation for microsurgical excision of cerebral arteriovenous malformation: case illustrations. Surg Neurol 2009; 72: 69-72
  12. 1 2 3 Stadie AT, Kockro RA, Reisch R, Tropine A, Boor S, Stoeter P, Perneczky A: Virtual reality system for planning minimally invasive neurosurgery. Technical note. J Neurosurg 2008; 108: 382-394
  13. Wong GK, Zhu CX, Ahuja AT, Poon WS: Craniotomy and clipping of intracranial aneurysm in a stereoscopic virtual reality environment" Neurosurgery 2007; 61: 564-568
  14. Guo, Y.; Ke, Y.; Zhang, S.; Wang, Q.; Duan, C.; Jia, H.; Zhou, L.; Xu, R. (2008). "Combined application of virtual imaging techniques and three-dimensional computed tomographic angiography in diagnosing intracranial aneurysms". Chinese Medical Journal (English Edition) 121: 2521.
  15. Du, ZY; Gao, X; Zhang, XL; Wang, ZQ; Tang, WJ (2010). "Preoperative evaluation of neurovascular relationships for microvascular decompression in the cerebellopontine angle in a virtual reality environment". J Neurosurg 113: 479–485. doi:10.3171/2009.9.jns091012.
  16. González Sánchez JJ, Enseñat Nora J, Candela Canto S, Rumià Arboix J, Caral Pons LA, Oliver D, Ferrer Rodriguez E: New stereoscopic virtual reality system application to cranial nerve microvascular decompression. Acta Neurochir (Wien) 152: 355-360, 2010
  17. Liu, XD; Xu, QW; Che, XM; Yang, DL (2009). "Trigeminal neurinomas: Clinical features and surgical experience in 84 patients". Neurosurg Rev 32: 435–444. doi:10.1007/s10143-009-0210-8.
  18. Low, D; Lee, CK; Dip, LL; Ng, WH; Ang, BT; Ng, I (2010). "Augmented reality neurosurgical planning and navigation for surgical excision of parasagittal, falcine and convexity meningiomas". Br J Neurosurg 24: 69–74. doi:10.3109/02688690903506093.
  19. Khu, K.J.; Ng, I.; Ng, W.H. (2009). "The relationship between parasagittal and falcine meningiomas and the superficial cortical veins: a virtual reality study". Acta neurochirurgica 151: 1459–1464. doi:10.1007/s00701-009-0379-1.
  20. Tang, H.-L.; Sun, H.-P.; Gong, Y.; Mao, Y.; Wu, J.-S.; Zhang, X.-L.; Xie, Q.; Xie, L.-Q.; Zheng, M.-Z.; Wang, D.-J.; Zhu, H.; Tang, W.-J.; Feng, X.-Y.; Chen, X.-C.; Zhou, L.-F. (2012). "Preoperative surgical planning for intracranial meningioma resection by virtual reality". Chin. Med. J. 125: 2057–2061.
  21. Anil, SM; Kato, Y; Hayakawa, M; Yoshida, K; Nagahisha, S; Kanno, T (2007). "Virtual 3-Dimensional preoperative planning with the dextroscope for excision of a 4th ventricular ependymoma". Minim Invasive Neurosurg 50: 65–70. doi:10.1055/s-2007-982508.
  22. Goh, K.Y.C., 2004. Separation surgery for total vertical craniopagus twins. Child’s Nervous System 20, 567–575.
  23. "Separate Fates". 2004.
  24. Wang, S.-S.; Xue, L.; Jing, J.-J.; Wang, R.-M. (2012a). "Virtual reality surgical anatomy of the sphenoid sinus and adjacent structures by the transnasal approach". J Craniomaxillofac Surg 40: 494–499. doi:10.1016/j.jcms.2011.08.008.
  25. Wang, S.-S.; Li, J.-F.; Zhang, S.-M.; Jing, J.-J.; Xue, L. (2014). "A virtual reality model of the clivus and surgical simulation via transoral or transnasal route". Int J Clin Exp Med 7: 3270–3279.
  26. Di Somma, A., de Notaris, M., stagno, v., Serra, l., Enseñat, J., Alobid, I., San Molina, J., Berenguer, J., Cappabianca, P., Prats-Galino, A., 2014. Extended Endoscopic Endonasal Approaches for Cerebral Aneurysms: Anatomical, Virtual Reality and Morphometric Study. BioMed Research International 2014. doi:10.1155/2014/703792
  27. Reisch, R.; Stadie, A.; Kockro, R.; Gawish, I.; Schwandt, E.; Hopf, N. (2009). "The minimally invasive supraorbital subfrontal key-hole approach for surgical treatment of temporomesial lesions of the dominant hemisphere". Minim Invasive Neurosurg 52: 163–169. doi:10.1055/s-0029-1238285.
  28. Fischer, G.; Stadie, A.; Schwandt, E.; Gawehn, J.; Boor, S.; Marx, J.; Oertel, J. (2009). "Minimally invasive superficial temporal artery to middle cerebral artery bypass through a minicraniotomy: benefit of three-dimensional virtual reality planning using magnetic resonance angiography". Neurosurg Focus 26: E20. doi:10.3171/2009.2.FOCUS0917.
  29. Reisch, R., Stadie, A., Kockro, R.A., Hopf, N., 2013. The keyhole concept in neurosurgery. World Neurosurg 79, S17.e9–13. doi:10.1016/j.wneu.2012.02.024
  30. Serra, C.; Huppertz, H.-J.; Kockro, R.A.; Grunwald, T.; Bozinov, O.; Krayenbühl, N.; Bernays, R.-L. (2013). "Rapid and accurate anatomical localization of implanted subdural electrodes in a virtual reality environment". J Neurol Surg A Cent Eur Neurosurg 74: 175–182. doi:10.1055/s-0032-1333124.
  31. Yang, D.L.; Xu, Q.W.; Che, X.M.; Wu, J.S.; Sun, B. (2009). "Clinical evaluation and follow-up outcome of presurgical plan by Dextroscope: a prospective controlled study in patients with skull base tumors". Surgical Neurology 72: 682–689. doi:10.1016/j.surneu.2009.07.040.
  32. Wang, S.-S.; Zhang, S.-M.; Jing, J.-J. (2012b). "Stereoscopic virtual reality models for planning tumor resection in the sellar region". BMC Neurol 12: 146. doi:10.1186/1471-2377-12-146.
  33. Chen, L.; Zhao, Y.; Zhou, L.; Zhu, W.; Pan, Z.; Mao, Y. (2011). "Surgical Strategies in Treating Brainstem Cavernous Malformations". Neurosurgery 68: 609–621. doi:10.1227/NEU.0b013e3182077531.
  34. Stadie, A.; Reisch, R.; Kockro, R.; Fischer, G.; Schwandt, E.; Boor, S.; Stoeter, P. (2009). "Minimally Invasive Cerebral Cavernoma Surgery using Keyhole Approaches – Solutions for Technique-related Limitations". Minim Invasive Neurosurg 52: 9–16. doi:10.1055/s-0028-1103305.
  35. Qiu, T.; Zhang, Y.; Wu, J.-S.; Tang, W.-J.; Zhao, Y.; Pan, Z.-G.; Mao, Y.; Zhou, L.-F. (2010). "Virtual reality presurgical planning for cerebral gliomas adjacent to motor pathways in an integrated 3-D stereoscopic visualization of structural MRI and DTI tractography". Acta Neurochir (Wien) 152: 1847–1857. doi:10.1007/s00701-010-0739-x.
  36. Kockro, RA; Serra, L; Tseng-Tsai, Y; Chan, C; Yih-Yian, S; GimGuan, C; Lee, E; Hoe, LY; Hern, N; Nowinski, WL (2000). "Planning and simulation of neurosurgery in a virtual reality environment". Neurosurgery 46: 118–135. doi:10.1097/00006123-200001000-00024.
  37. Kockro, RA; Stadle, A; Schwandt, E; Reisch, R; Charalampaki, C; Ng, I; Yeo, TT; Hwang, P; Serra, L; Perneczky, A (2007). "A collaborative virtual reality environment for neurosurgical planning and training". Neurosurgery 61: 379–391. doi:10.1227/01.neu.0000303997.12645.26.
  38. Yang; Xu, QW; Che, XM; Wu, JS; Sun, B (2009). "Clinical evaluation and follow-up outcome of presurgical plan by Dextroscope: a prospective controlled study in patients with skull base tumors". Surg Neurol 72: 682–689. doi:10.1016/j.surneu.2009.07.040.
  39. Stadie, AT; Kockro, RA; Reisch, R; Tropine, A; Boor, S; Stoeter, P; Perneczky, A (2008). "Virtual reality system for planning minimally invasive neurosurgery. Technical note". J Neurosurg 108: 382–394. doi:10.3171/jns/2008/108/2/0382.
  40. De Notaris, M.; Palma, K.; Serra, L.; Enseñat, J.; Alobid, I.; Poblete, J.; Gonzalez, J.B.; Solari, D.; Ferrer, E.; Prats-Galino, A. (2014). "A Three-Dimensional Computer-Based Perspective of the Skull Base". World Neurosurg 82: S41–S48. doi:10.1016/j.wneu.2014.07.024.
  41. Franzini, A.; Messina, G.; Marras, C.; Molteni, F.; Cordella, R.; Soliveri, P.; Broggi, G. (2009). "Poststroke fixed dystonia of the foot relieved by chronic stimulation of the posterior limb of the internal capsule". Journal of Neurosurgery 111: 1216–1219. doi:10.3171/2009.4.JNS08785.
  42. Gu, S.-X.; Yang, D.-L.; Cui, D.-M.; Xu, Q.-W.; Che, X.-M.; Wu, J.-S.; Li, W.-S. (2011). "Anatomical studies on the temporal bridging veins with Dextroscope and its application in tumor surgery across the middle and posterior fossa". Clin Neurol Neurosurg 113: 889–894. doi:10.1016/j.clineuro.2011.06.008.
  43. Ha, W.; Yang, D.; Gu, S.; Xu, Q.-W.; Che, X.; Wu, J.-S.; Li, W. (2014). "Anatomical study of suboccipital vertebral arteries and surrounding bony structures using virtual reality technology". Med. Sci. Monit 20: 802–806. doi:10.12659/MSM.890840.
  44. Kockro, R.A. (2013). "Neurosurgery simulators--beyond the experiment". World Neurosurg 80: e101–102. doi:10.1016/j.wneu.2013.02.017.
  45. Kockro, R.A.; Hwang, P.Y.K. (2009). "Virtual temporal bone: an interactive 3-dimensional learning aid for cranial base surgery". Neurosurgery 64: 216–229. doi:10.1227/01.NEU.0000343744.46080.91.
  46. Lee, C.K.; Tay, L.L.; Ng, W.H.; Ng, I.; Ang, B.T. (2008). "Optimization of ventricular catheter placement via posterior approaches: a virtual reality simulation study". Surg Neurol 70: 274–277. doi:10.1016/j.surneu.2007.07.020.
  47. Robison, R.A.; Liu, C.Y.; Apuzzo, M.L.J. (2011). "Man, Mind, and Machine: The Past and Future of Virtual Reality Simulation in Neurologic Surgery". World neurosurgery 76: 419–430. doi:10.1016/j.wneu.2011.07.008.
  48. Shen, M., Zhang, X.-L., Yang, D.-L., Wu, J.-S., 2010. Stereoscopic virtual reality presurgical planning for cerebrospinal otorrhea. Neurosciences (Riyadh) 15, 204–208.
  49. Shi, J.; Xia, J.; Wei, Y.; Wang, S.; Wu, J.; Chen, F.; Huang, G.; Chen, J. (2014). "Three-dimensional virtual reality simulation of periarticular tumors using Dextroscope reconstruction and simulated surgery: a preliminary 10-case study". Med. Sci. Monit 20: 1043–1050. doi:10.12659/MSM.889770.
  50. Stadie, A.T.; Kockro, R.A. (2013). "Mono-Stereo-Autostereo". Neurosurgery 72: A63–A77. doi:10.1227/NEU.0b013e318270d310.
  51. Stadie, A.T.; Kockro, R.A.; Serra, L.; Fischer, G.; Schwandt, E.; Grunert, P.; Reisch, R. (2011). "Neurosurgical craniotomy localization using a virtual reality planning system versus intraoperative image–guided navigation". Int J CARS 6: 565–572. doi:10.1007/s11548-010-0529-1.
  52. Yang, D.-L., Che, X., Lou, M., Xu, Q.-W., Wu, J.-S., Li, W., Cui, D.-M., n.d. Application Of Dextroscope Virtual Reality System In Anatomical Research Of Inner Structures In Petrosal Bone.
  53. Caversaccio, M.; Eichenberger, A.; Häusler, R. (2003). "Virtual simulator as a training tool for endonasal surgery". Am J Rhinol 17: 283–290.
  54. Corey, C.L.; Popelka, G.R.; Barrera, J.E.; Most, S.P. (2012). "An analysis of malar fat volume in two age groups: implications for craniofacial surgery" Check |url= value (help). Craniomaxillofac Trauma Reconstr 5: 231–234. doi:10.1055/s-0032-1329545.
  55. Kwon, J.; Barrera, J.E.; Jung, T.-Y.; Most, S.P. (2009). "Measurements of orbital volume change using computed tomography in isolated orbital blowout fractures". Arch Facial Plast Surg 11: 395–398. doi:10.1001/archfacial.2009.77.
  56. Kwon, J.; Barrera, J.E.; Most, S.P. (2010). "Comparative Computation of Orbital Volume From Axial and Coronal CT Using Three-Dimensional Image Analysis". Ophthalmic Plastic & Reconstructive Surgery 26: 26–29. doi:10.1097/IOP.0b013e3181b80c6a.
  57. Li, Y., Tang, K., Xu, X., Yi, B., 2012. Application of Dextroscope virtual reality in anatomical research of the mandible part of maxillary artery. Beijing Da Xue Xue Bao 44, 75–79.
  58. Pau, C.Y., Barrera, J.E., Kwon, J., Most, S.P., 2010. Three-dimensional analysis of zygomatic-maxillary complex fracture patterns. Craniomaxillofac Trauma Reconstr 3, 167–176. doi:10.1055/s-0030-1263082
  59. Correa, C.R (2006). "Coronary Artery Findings After Left-Sided Compared With Right-Sided Radiation Treatment for Early-Stage Breast Cancer". Journal of Clinical Oncology 25, 3031–3037 25: 3031–3037. doi:10.1200/JCO.2006.08.6595.
  60. Chen, G (2009). "The use of virtual reality for the functional simulation of hepatic tumors (case control study)". International Journal of Surgery 8, 72–78 8: 72–78. doi:10.1016/j.ijsu.2009.11.005.
  61. Chen, G., Yang, S.-Z., Wu, G.-Q., Wang, Y., Fan, G.-H., Tan, L.-W., Fang, B., Zhang, S.-X., Dong, J.-H., 2009. Development and clinical application of 3D operative planning system of liver in virtual reality environments. Zhonghua Wai Ke Za Zhi (Chinese Journal of Surgery) 47, 1620–1626.
  62. Haase, J., 2010. Basic Training in Technical Skills: Introduction to Learning"Surgical Skills" in a Constructive Way, in: Lumenta, C.B., Rocco, C.D., Haase, J., Mooij, J.J.A. (Eds.), Neurosurgery, European Manual of Medicine. Springer Berlin Heidelberg, pp. 17–23.
  63. Kockro, Ralf A (2009). "A collaborative virtual reality environment for neurosurgical planning and training". Neurosurgery 61: 379-391, 2007 61: 379–391. doi:10.1227/01.neu.0000303997.12645.26.
This article is issued from Wikipedia - version of the Saturday, March 19, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.