Distributive law between monads
In category theory, an abstract branch of mathematics, distributive laws between monads are a way to express abstractly that two algebraic structures distribute one over the other one.
Suppose that and are two monads on a category C. In general, there is no natural monad structure on the composite functor ST. However, there is a natural monad structure on the functor ST if there is a distributive law of the monad S over the monad T.
Formally, a distributive law of the monad S over the monad T is a natural transformation
such that the diagrams
commute.
This law induces a composite monad ST with
- as multiplication: ,
- as unit: .
See also
References
- Jon Beck (1969). "Distributive laws". Lecture Notes in Mathematics. Lecture Notes in Mathematics 80: 119–140. doi:10.1007/BFb0083084. ISBN 978-3-540-04601-1.
- Michael Barr and Charles Wells (1985). Toposes, Triples and Theories (PDF). Springer-Verlag. ISBN 0-387-96115-1.
- Distributive law in nLab
- G. Böhm, Internal bialgebroids, entwining structures and corings, AMS Contemp. Math. 376 (2005) 207–226; arXiv:math.QA/0311244
- T. Brzeziński, S. Majid, Coalgebra bundles, Comm. Math. Phys. 191 (1998), no. 2, 467–492 arXiv.
- T. Brzeziński, R. Wisbauer, Corings and comodules, London Math. Soc. Lec. Note Series 309, Cambridge 2003.
- T. F. Fox, M. Markl, Distributive laws, bialgebras, and cohomology. Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), 167–205, Contemp. Math. 202, AMS 1997.
- S. Lack, Composing PROPS, Theory Appl. Categ. 13 (2004), No. 9, 147–163.
- S. Lack, R. Street, The formal theory of monads II, Special volume celebrating the 70th birthday of Professor Max Kelly. J. Pure Appl. Algebra 175 (2002), no. 1-3, 243–265.
- M. Markl, Distributive laws and Koszulness. Annales de l'Institut Fourier (Grenoble) 46 (1996), no. 2, 307–323 (numdam)
- R. Street, The formal theory of monads, J. Pure Appl. Alg. 2, 149–168 (1972)
- Z. Škoda, Distributive laws for monoidal categories (arXiv:0406310); Equivariant monads and equivariant lifts versus a 2-category of distributive laws (arXiv:0707.1609); Bicategory of entwinings arXiv:0805.4611
- Z. Škoda, Some equivariant constructions in noncommutative geometry, Georgian Math. J. 16 (2009) 1; 183–202 arXiv:0811.4770
- R. Wisbauer, Algebras versus coalgebras. Appl. Categ. Structures 16 (2008), no. 1-2, 255–295.
This article is issued from Wikipedia - version of the Wednesday, March 09, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.