Dodecagonal prism
Uniform Dodecagonal prism | |
---|---|
![]() | |
Type | Prismatic uniform polyhedron |
Elements | F = 14, E = 36, V = 24 (χ = 2) |
Faces by sides | 12{4}+2{12} |
Schläfli symbol | t{2,12} or {12}x{} |
Wythoff symbol | 2 12 | 2 2 2 6 | |
Coxeter diagrams | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Symmetry | D12h, [12,2], (*12.2.2), order 48 |
Rotation group | D12, [12,2]+, (12.2.2), order 24 |
References | U76(j) |
Dual | Dodecagonal dipyramid |
Properties | convex, zonohedron |
![]() Vertex figure 4.4.12 |
In geometry, the dodecagonal prism is the tenth in an infinite set of prisms, formed by square sides and two regular dodecagon caps.
If faces are all regular, it is a semiregular polyhedron.
Use
It is used in the construction of two prismatic uniform honeycombs:
![]() Omnitruncated triangular-hexagonal prismatic honeycomb ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() Truncated hexagonal prismatic honeycomb ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Related polyhedra
Polyhedron | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
---|---|---|---|---|---|---|---|---|---|---|
Coxeter | ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() |
Tiling | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||
Config. | 3.4.4 | 4.4.4 | 5.4.4 | 6.4.4 | 7.4.4 | 8.4.4 | 9.4.4 | 10.4.4 | 11.4.4 | 12.4.4 |
External links
This article is issued from Wikipedia - version of the Saturday, August 03, 2013. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.