Domain (biology)

Australian green tree frog (Litoria caerulea)
Scanning electron micrograph of S. aureus; false color added
Electron micrograph of Sulfolobus infected with Sulfolobus virus STSV1.
The three-domain system comprises,

Eukaryota (represented by the Australian green tree frog, left),

Bacteria (represented by Staphylococcus aureus, middle) and

Archaea (represented by Sulfolobus, right).

In biological taxonomy, a domain (also empire, or regio[1]) is the highest taxonomic rank of organisms in the three-domain system of taxonomy designed by Carl Woese, an American microbiologist and biophysicist. According to the Woese system, introduced in 1990, the tree of life consists of three domains: Archaea (a term which Woese created), Bacteria, and Eukarya.[2] The first two are all prokaryotic microorganisms, or single-celled organisms whose cells have no nucleus. All life that has a nucleus and membrane-bound organelles, and most multi-cellular life, is included in the Eukaryota.

Characteristics of the three domains of life

Bacteria Archaea Eucaryota Aquifex Thermotoga Cytophaga Bacteroides Planctomyces Cyanobacteria Proteobacteria Spirochetes Gram-positive bacteria Green filantous bacteria Pyrodicticum Thermoproteus Thermococcus celer Methanococcus Methanobacterium Methanosarcina Halophiles Entamoebae Slime mold Animal Fungus Plant Ciliate Flagellate Trichomonad Microsporidia Diplomonad
A speculatively rooted tree for rRNA genes, showing major branches Bacteria, Archaea, and Eukaryota
The three-domains tree and the Eocyte hypothesis.[3]
Phylogenetic tree showing the relationship between the eukaryotes and other forms of life.[4] Eukaryotes are colored red, archaea green and bacteria blue.

Each of these three domains of life recognized by biologists today contain rRNA which is unique to them, and this fact in itself forms the basis of the three-domain system. While the presence of a nuclear membrane differentiates the Eukarya domain from the Archaea and Bacteria domains - both of which lack a nuclear membrane - distinct biochemical and RNA markers differentiate the Archaea and Bacteria domains from each other.

Archaea

Archaea are prokaryotic cells which are typically characterized by membrane lipids that are branched hydrocarbon chains attached to glycerol by ether linkages. The presence of these ether linkages in Archaea adds to their ability to withstand extreme temperatures and highly acidic conditions, but many archea live in mild environments. Halophiles, organisms which thrive in highly salty environments, and hyperthermophiles, organisms which thrive in extremely hot environments, are examples of Archaea. Archaea are very small.

Bacteria

Even though bacteria are prokaryotic cells just like Archaea, their membranes are made of unbranched fatty acid chains attached to glycerol by ester linkages. Cyanobacteria and mycoplasmas are two examples of bacteria. They characteristically do not have ether linkages like Archaea, and they are grouped into a different category - and hence a different domain. There is a great deal of diversity in this domain, and between that and horizontal gene transfer it is next to impossible to determine how many species of bacteria exist on the planet.

Eukarya

Organisms in the domain Eukarya are eukaryotic cells, or consist of them, which have membranes that are similar to those of bacteria. Eukaryotes are further grouped into Kingdom Fungi (yeast, mold, etc.), Kingdom Plantae (flowering plants, ferns, etc.) and Kingdom Animalia (insects, vertebrates, etc.) and the now-defunct, paraphyletic Kingdom Protista (algae, protozoans, etc.).

Not all Eukaryotes have a cell wall, and even in those which do, the walls do not contain peptidoglycan, which bacteria do have. While cells are organized into tissues in the kingdom Plantae as well as the kingdom Animalia, cell walls are never found in animal cells.

Exclusion of viruses

Main article: Virus

None of the three systems currently include non-cellular life. As of 2011 there is talk about Nucleocytoplasmic large DNA viruses possibly being a fourth branch domain of life, a view supported by researchers in 2012 who explain in their abstract:

The discovery of giant viruses with genome and physical size comparable to cellular organisms, remnants of protein translation machinery and virus-specific parasites (virophages) have raised intriguing questions about their origin. Evidence advocates for their inclusion into global phylogenomic studies and their consideration as a distinct and ancient form of life. [...] Results call for a change in the way viruses are perceived. They likely represent a distinct form of life that either predated or coexisted with the last universal common ancestor (LUCA) and constitute a very crucial part of our planet's biosphere.[5]

Alternative classifications

Alternative classifications of life so far proposed include:

See also

References

  1. "The Scientific Taxonomy and Classification of all Creatures". Retrieved 19 October 2015.
  2. Woese C, Kandler O, Wheelis M (1990). "Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya.". Proc Natl Acad Sci USA 87 (12): 4576–9. Bibcode:1990PNAS...87.4576W. doi:10.1073/pnas.87.12.4576. PMC 54159. PMID 2112744. Retrieved 11 February 2010.
  3. Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R., Embley, T. M. (2008). "The archaebacterial origin of eukaryotes". Proc Natl Acad Sci USA 105 (51): 20356–61. Bibcode:2008PNAS..10520356C. doi:10.1073/pnas.0810647105. PMC 2629343. PMID 19073919.
  4. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006). "Toward automatic reconstruction of a highly resolved tree of life". Science 311 (5765): 1283–7. Bibcode:2006Sci...311.1283C. doi:10.1126/science.1123061. PMID 16513982.
  5. Nasir, Arshan; Kim, Kyung Mo; and Caetano-Anolles, Gustavo, "Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya." BMC Evol Biol. 2012; 12: 156. Published online 2012 August 24. doi:10.1186/1471-2148-12-156
  6. Mayr, Ernst (1998). "Two empires or three?". Proc Natl Acad Sci USA 95 (17): 9720–9723. Bibcode:1998PNAS...95.9720. doi:10.1073/pnas.95.17.9720. PMC 33883. PMID 9707542. Retrieved 5 September 2011.
  7. Cavalier-Smith, T. (2004). "Only six kingdoms of life" (PDF). Proc. R. Soc. Lond. B 271 (1545): 1251–62. doi:10.1098/rspb.2004.2705. PMC 1691724. PMID 15306349. Retrieved 2010-04-29
  8. Archibald, John M. (23 December 2008). "The eocyte hypothesis and the origin of eukaryotic cells". PNAS 105 (51): 20049–20050. doi:10.1073/pnas.0811118106.
  9. Lake, James A.; Henderson, Eric; Oakes, Melanie; Clark, Michael W. (June 1984). "Eocytes: A new ribosome structure indicates a kingdom with a close relationship to eukaryotes". PNAS 81 (12): 3786–3790. doi:10.1073/pnas.81.12.3786. PMC 345305. PMID 6587394.
  10. Williams, Tom A.; Foster, Peter G.; Cox, Cymon J.; Embley, T. Martin (December 2013). "An archaeal origin of eukaryotes supports only two primary domains of life". Nature 504 (7479): 231–236. doi:10.1038/nature12779. PMID 24336283.

External links

This article is issued from Wikipedia - version of the Tuesday, May 03, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.