Double layer potential

In potential theory, an area of mathematics, a double layer potential is a solution of Laplace's equation corresponding to the electrostatic or magnetic potential associated to a dipole distribution on a closed surface S in three-dimensions. Thus a double layer potential u(x) is a scalar-valued function of x  R3 given by

u(\mathbf{x}) = \frac {-1} {4\pi} \int_S \rho(\mathbf{y}) \frac{\partial}{\partial\nu}\frac{1}{|\mathbf{x}-\mathbf{y}|} \,d\sigma(\mathbf{y})

where ρ denotes the dipole distribution, ∂/∂ν denotes the directional derivative in the direction of the outward unit normal in the y variable, and dσ is the surface measure on S.

More generally, a double layer potential is associated to a hypersurface S in n-dimensional Euclidean space by means of

u(\mathbf{x}) = \int_S \rho(\mathbf{y})\frac{\partial}{\partial\nu} P(\mathbf{x}-\mathbf{y})\,d\sigma(\mathbf{y})

where P(y) is the Newtonian kernel in n dimensions.

See also

References

This article is issued from Wikipedia - version of the Friday, March 18, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.