Duality gap

In optimization problems in applied mathematics, the duality gap is the difference between the primal and dual solutions. If d^* is the optimal dual value and p^* is the optimal primal value then the duality gap is equal to p^* - d^*. This value is always greater than or equal to 0 (for minimization problems). The duality gap is zero if and only if strong duality holds. Otherwise the gap is strictly positive and weak duality holds.[1]

In general given two dual pairs separated locally convex spaces \left(X,X^*\right) and \left(Y,Y^*\right). Then given the function f: X \to \mathbb{R} \cup \{+\infty\}, we can define the primal problem by

\inf_{x \in X} f(x). \,

If there are constraint conditions, these can be built into the function f by letting f = f + I_{\mathrm{constraints}} where I is the indicator function. Then let F: X \times Y \to \mathbb{R} \cup \{+\infty\} be a perturbation function such that F(x,0) = f(x). The duality gap is the difference given by

\inf_{x \in X} [F(x,0)] - \sup_{y^* \in Y^*} [-F^*(0,y^*)]

where F^* is the convex conjugate in both variables.[2][3][4]

In computational optimization, another "duality gap" is often reported, which is the difference in value between any dual solution and the value of a feasible but suboptimal iterate for the primal problem. This alternative "duality gap" quantifies the discrepancy between the value of a current feasible but suboptimal iterate for the primal problem and the value of the dual problem; the value of the dual problem is, under regularity conditions, equal to the value of the convex relaxation of the primal problem: The convex relaxation is the problem arising replacing a non-convex feasible set with its closed convex hull and with replacing a non-convex function with its convex closure, that is the function that has the epigraph that is the closed convex hull of the original primal objective function.[5] [6] [7] [8] [9] [10] [11] [12][13]

References

  1. Borwein, Jonathan; Zhu, Qiji (2005). Techniques of Variational Analysis. Springer. ISBN 978-1-4419-2026-3.
  2. Radu Ioan Boţ; Gert Wanka; Sorin-Mihai Grad (2009). Duality in Vector Optimization. Springer. ISBN 978-3-642-02885-4.
  3. Ernö Robert Csetnek (2010). Overcoming the failure of the classical generalized interior-point regularity conditions in convex optimization. Applications of the duality theory to enlargements of maximal monotone operators. Logos Verlag Berlin GmbH. ISBN 978-3-8325-2503-3.
  4. Zălinescu, C. (2002). Convex analysis in general vector spaces. River Edge, NJ: World Scientific Publishing Co. Inc. pp. 106–113. ISBN 981-238-067-1. MR 1921556.
  5. Ahuja, Ravindra K.; Magnanti, Thomas L.; and Orlin, James B. (1993). Network Flows: Theory, Algorithms and Applications. Prentice Hall. ISBN 0-13-617549-X.
  6. Bertsekas, Dimitri P. (1999). Nonlinear Programming (2nd ed.). Athena Scientific. ISBN 1-886529-00-0.
  7. Bonnans, J. Frédéric; Gilbert, J. Charles; Lemaréchal, Claude; Sagastizábal, Claudia A. (2006). Numerical optimization: Theoretical and practical aspects. Universitext (Second revised ed. of translation of 1997 French ed.). Berlin: Springer-Verlag. pp. xiv+490. doi:10.1007/978-3-540-35447-5. ISBN 3-540-35445-X. MR 2265882.
  8. Hiriart-Urruty, Jean-Baptiste; Lemaréchal, Claude (1993). Convex analysis and minimization algorithms, Volume I: Fundamentals. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 305. Berlin: Springer-Verlag. pp. xviii+417. ISBN 3-540-56850-6. MR 1261420.
  9. Hiriart-Urruty, Jean-Baptiste; Lemaréchal, Claude (1993). "14 Duality for Practitioners". Convex analysis and minimization algorithms, Volume II: Advanced theory and bundle methods. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 306. Berlin: Springer-Verlag. pp. xviii+346. ISBN 3-540-56852-2. MR 1295240.
  10. Lasdon, Leon S. (2002) [Reprint of the 1970 Macmillan]. Optimization theory for large systems. Mineola, New York: Dover Publications, Inc. pp. xiii+523. ISBN 978-0-486-41999-2. MR 1888251.
  11. Lemaréchal, Claude (2001). "Lagrangian relaxation". In Jünger, Michael; and Naddef, Denis. Computational combinatorial optimization: Papers from the Spring School held in Schloß Dagstuhl, May 15–19, 2000. Lecture Notes in Computer Science (LNCS) 2241. Berlin: Springer-Verlag. pp. 112–156. doi:10.1007/3-540-45586-8_4. ISBN 3-540-42877-1. MR 1900016.
  12. Minoux, Michel (1986). Mathematical programming: Theory and algorithms. Egon Balas (forward); Steven Vajda (trans) from the (1983 Paris: Dunod) French. Chichester: A Wiley-Interscience Publication. John Wiley & Sons, Ltd. pp. xxviii+489. ISBN 0-471-90170-9. MR 868279. (2008 Second ed., in French: Programmation mathématique : Théorie et algorithmes, Éditions Tec & Doc, Paris, 2008. xxx+711 pp. ISBN 978-2-7430-1000-3. MR 2571910).
  13. Shapiro, Jeremy F. (1979). Mathematical programming: Structures and algorithms. New York: Wiley-Interscience [John Wiley & Sons]. pp. xvi+388. ISBN 0-471-77886-9. MR 544669.
This article is issued from Wikipedia - version of the Friday, June 05, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.