Duplication and elimination matrices

In mathematics, especially in linear algebra and matrix theory, the duplication matrix and the elimination matrix are linear transformations used for transforming half-vectorizations of matrices into vectorizations or (respectively) vice versa.

Duplication matrix

The duplication matrix Dn is the unique n2 × n(n+1)/2 matrix which, for any n × n symmetric matrix A, transforms vech(A) into vec(A):

Dn vech(A) = vec(A).

For the 2×2 symmetric matrix A = \left[\begin{smallmatrix} a & b \\ b & d \end{smallmatrix}\right], this transformation reads

\begin{bmatrix} 1&0&0 \\ 0&1&0 \\ 0&1&0 \\ 0&0&1 \end{bmatrix} \begin{bmatrix} a \\ b \\ d \end{bmatrix} = \begin{bmatrix} a \\ b \\ b \\ d \end{bmatrix}

Elimination matrix

The elimination matrix Ln is the unique n(n+1)/2 × n2 matrix which, for any n × n matrix A, transforms vec(A) into vech(A):

Ln vec(A) = vech(A). [1]

For the 2×2 matrix A = \left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right], this transformation reads

\begin{bmatrix} 1&0&0&0 \\ 0&1&0&0 \\ 0&0&0&1 \end{bmatrix} \begin{bmatrix} a \\ c \\ b \\ d \end{bmatrix} = \begin{bmatrix} a \\ c \\ d \end{bmatrix}.

Notes

  1. Magnus & Neudecker (1980), Definition 3.1

References

This article is issued from Wikipedia - version of the Friday, March 27, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.