Dyall Hamiltonian

In quantum chemistry, the Dyall Hamiltonian is a modified Hamiltonian with two-electron nature. It can be written as follows:

\hat{\mathcal{H}}^D = \hat{\mathcal{H}}^D_i + \hat{\mathcal{H}}^D_v + C
\hat{\mathcal{H}}^D_i = \sum_{i}^{\rm core} \epsilon_i E_{ii} + \sum_r^{\rm virt} \epsilon_r E_{rr}
\hat{\mathcal{H}}^D_v = \sum_{ab}^{\rm act} h_{ab}^{\rm eff} E_{ab} +
\frac{1}{2} \sum_{abcd}^{\rm act} \left\langle ab \left.\right| cd \right\rangle \left(E_{ac}
E_{bd} - \delta_{bc} E_{ad} \right)
C = 2 \sum_{i}^{\rm core} h_{ii} + \sum_{ij}^{\rm core} \left( 2 \left\langle ij \left.\right| ij\right\rangle - \left \langle ij \left.\right| ji\right\rangle \right) - 2 \sum_{i}^{\rm core} \epsilon_i
h_{ab}^{\rm eff} =  h_{ab} + \sum_j \left( 2 \left\langle aj \left.\right| bj \right\rangle -
\left\langle aj \left.\right| jb \right\rangle \right)

where labels i,j,\ldots, a,b,\ldots, r,s,\ldots denote core, active and virtual orbitals (see Complete active space) respectively, \epsilon_i and \epsilon_r are the orbital energies of the involved orbitals, and E_{mn} operators are the spin-traced operators a^{\dagger}_{m\alpha}a_{n\alpha} + a^{\dagger}_{m\beta}a_{n\beta}. These operators commute with S^2 and S_z, therefore the application of these operators on a spin-pure function produces again a spin-pure function.

The Dyall Hamiltonian behaves like the true Hamiltonian inside the CAS space, having the same eigenvalues and eigenvectors of the true Hamiltonian projected onto the CAS space.


This article is issued from Wikipedia - version of the Saturday, June 20, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.