Dynamic scattering mode

George Heilmeier proposed the dynamic scattering effect which causes a strong scattering of light when the electric field applied to a special liquid crystal mixture exceeds a threshold value.

A DSM cell requires the following ingredients:

With no voltage applied the LC-cell with the homeotropically aligned LC is clear and transparent. With increasing voltage and current, the electric field is trying to align the long molecular axis of the LC perpendicular to the field while the ion transport through the layer has the tendency to align the LC perpendicular to the substrate plates. As a result, a striped repetitive pattern is generated in the cell, of which the building blocks are named "Williams domains". Upon further increase of the voltage this regular pattern is replaced by a turbulent state which is strongly scattering light. This effect belongs to the class of electro-hydrodynamic effects in LCs. Electro-optic displays can be realized with that effect in the transmissive and reflective mode of operation. The driving voltages required for light scattering are in the range of several ten volts and the non-trivial current is depending on the area of the activated segments. The DMS effect was thus not suited for battery powered electronic devices.

References


This article is issued from Wikipedia - version of the Friday, July 17, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.