Eccentricity vector

In celestial mechanics, the eccentricity vector of a Kepler orbit is the vector that points towards the periapsis and has a magnitude equal to the orbit's scalar eccentricity. The magnitude is unitless. For Kepler orbits the eccentricity vector is a constant of motion. Its main use is in the analysis of almost circular orbits, as perturbing (non-Keplerian) forces on an actual orbit will cause the osculating eccentricity vector to change continuously. For the eccentricity and argument of periapsis parameters, eccentricity zero (circular orbit) corresponds to a singularity.

Calculation

The eccentricity vector  \mathbf{e} \, is: [1]

 \mathbf{e} = {\mathbf{v}\times\mathbf{h}\over{\mu}} - {\mathbf{r}\over{\left|\mathbf{r}\right|}} = 
\left ( {\mathbf{\left |v \right |}^2 \over {\mu} }- {1 \over{\left|\mathbf{r}\right|}} \right ) \mathbf{r} - {\mathbf{r} \cdot \mathbf{v} \over{\mu}} \mathbf{v}

which follows immediately from the vector identity:

 \mathbf{v}\times \left ( \mathbf{r}\times \mathbf{v} \right ) = \left ( \mathbf{v} \cdot \mathbf{v} \right ) \mathbf{r} - \left ( \mathbf{r} \cdot \mathbf{v} \right ) \mathbf{v}

where:

See also

References

  1. Cordani, Bruno (2003). The Kepler Problem. Birkhaeuser. p. 22. ISBN 3-7643-6902-7.
This article is issued from Wikipedia - version of the Friday, October 30, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.