Electron-longitudinal acoustic phonon interaction
Electron-longitudinal acoustic phonon interaction is an equation concerning atoms.
Displacement operator of the longitudinal acoustic phonon
The equation of motions of the atoms of mass M which locates in the periodic lattice is
-
,
where
is the displacement of the nth atom from their equilibrium positions.
If we define the displacement
of the nth atom by
, where
is the coordinates of the lth atom and a is the lattice size,
the displacement is given by 
Using Fourier transform, we can define
and
-
.
Since
is a Hermite operator,
From the definition of the creation and annihilation operator 
-
is written as
Then
expressed as
Hence, when we use continuum model, the displacement for the 3-dimensional case is
-
,
where
is the unit vector along the displacement direction.
Interaction Hamiltonian
The electron-longitudinal acoustic phonon interaction Hamiltonian is defined as 
-
,
where
is the deformation potential for electron scattering by acoustic phonons.[1]
Inserting the displacement vector to the Hamiltonian results to
Scattering probability
The scattering probability for electrons from
to
states is
Replace the integral over the whole space with a summation of unit cell integrations
where
,
is the volume of a unit cell.
Notes
- ↑ Hamaguchi 2001, p. 208.
References
- C. Hamaguchi (2001). Basic Semiconductor Physics. Springer. pp. 183–239.
- Yu, Peter Y. and Cardona, Manuel (2005). Fundamentals of Semiconductors (3rd ed.). Springer.




![H_{el} = D_{ac} \sum_{q} \sqrt{ \frac {\hbar} {2 M N \omega_{q} } } ( i e_{q} \cdot q ) [ a_{q} e^{i q \cdot r} - a^{\dagger}_{q} e^{-i q \cdot r} ]](../I/m/443c800aeb3b9de50bc83fcb3941a1c2.png)
![P(k,k') = \frac {2 \pi} {\hbar} \mid \langle k' , q' | H_{el}| \ k , q \rangle \mid ^ {2} \delta [ \varepsilon (k') - \varepsilon (k) \mp \hbar \omega_{q} ]](../I/m/7c63fe0c3518b623539a44e4fc4ab024.png)
![= \frac {2 \pi} {\hbar} \left| D_{ac} \sum_{q} \sqrt{ \frac {\hbar} {2 M N \omega_{q} } } ( i e_{q} \cdot q ) \sqrt { n_{q} + \frac {1} {2} \mp \frac {1} {2} } \, \frac {1} {L^{3}} \int d^{3} r \, u^{\ast}_{k'} (r) u_{k} (r) e^{i ( k - k' \pm q ) \cdot r } \right|^2 \delta [ \varepsilon (k') - \varepsilon (k) \mp \hbar \omega_{q} ]](../I/m/d03cc25011761722d417efbb57046c3b.png)
![P(k,k') = \frac {2 \pi} {\hbar} \left( D_{ac} \sum_{q} \sqrt{ \frac {\hbar} {2 M N \omega_{q} } } | q | \sqrt { n_{q} + \frac {1} {2} \mp \frac {1} {2} } \, I(k,k') \delta_{k' , k \pm q } \right)^2 \delta [ \varepsilon (k') - \varepsilon (k) \mp \hbar \omega_{q} ],](../I/m/299677da37cbfc7c45890f99cd5f3f9a.png)
