Engel identity
The Engel identity, named after Friedrich Engel, is a mathematical equation that is satisfied by all elements of a Lie ring, in the case of an Engel Lie ring, or by all the elements of a group, in the case of an Engel group. The Engel identity is the defining condition of an Engel group.
Formal definition
A Lie ring 
 is defined as a nonassociative ring with multiplication that is anticommutative and satisfies the Jacobi identity with respect to the Lie bracket 
, defined for all elements 
 in the ring 
. The Lie ring 
 is defined to be an n-Engel Lie ring if and only if
-  for all 
 in 
, the n-Engel identity 
 (n copies of 
), is satisfied.[1]
In the case of a group 
, in the preceding definition, use the definition [x,y] = x−1 • y−1 • x • y and replace 
 by 
, where 
 is the identity element of the group 
.[2]
See also
References
- ↑ Traustason, Gunnar (1993). "Engel Lie-Algebras". Quart. J. Math. Oxford 44 (3): 355–384. doi:10.1093/qmath/44.3.355.
 - ↑ Traustason, Gunnar. "Engel groups (a survey)" (PDF).