Ernst equation

In mathematics, the Ernst equation is a non-linear partial differential equation, named after the physicist Frederick J. Ernst.

Ernst equation

\displaystyle \Re(u)(u_{rr}+u_r/r+u_{zz}) = (u_r)^2+(u_z)^2.

It is used to produce exact solutions of Einstein's equations.

References

Bibliography

In Journal of Mathematical Physics

  1. 1971 Frederick J. Ernst, Exterior-Algebraic Derivation of Einstein Field Equations Employing a Generalized Basis
  2. 1974 Frederick J. Ernst, Complex potential formulation of the axially symmetric gravitational field problem
  3. 1974 Frederick J. Ernst, Weyl conform tensor for stationary gravitational fields
  4. 1975 Frederick J. Ernst, Black holes in a magnetic universe
  5. 1975 Frederick J. Ernst, Erratum: Complex potential formulation of the axially symmetric gravitational field problem
  6. 1975 John E. Economou & Frederick J. Ernst, Weyl conform tensor of =2 Tomimatsu–Sato spinning mass gravitational field
  7. 1976 Frederick J. Ernst & Walter J. Wild, Kerr black holes in a magnetic universe
  8. 1976 Frederick J. Ernst, New representation of the Tomimatsu–Sato solution
  9. 1976 Frederick J. Ernst, Removal of the nodal singularity of the C-metric
  10. 1977 Frederick J. Ernst, A new family of solutions of the Einstein field equations
  11. 1978 Frederick J. Ernst, Coping with different languages in the null tetrad formulation of general relativity
  12. 1978 Frederick J. Ernst & I. Hauser, Field equations and integrability conditions for special type N twisting gravitational fields
  13. 1978 Frederick J. Ernst, Generalized C-metric
  14. 1978 Isidore Hauser & Frederick J. Ernst, On the generation of new solutions of the Einstein–Maxwell field equations
  15. 1979 I. Hauser & Frederick J. Ernst, SU(2,1) generation of electrovacs from Minkowski space
  16. Erratum: 1979 Coping with different languages in the null tetrad formulation of general relativity
  17. Erratum: 1979 Generalized C metric
  18. 1980 Isidore Hauser & Frederick J. Ernst, A homogeneous Hilbert problem for the Kinnersley–Chitre transformations of electrovac space-times
  19. 1980 Isidore Hauser & Frederick J. Ernst, A homogeneous Hilbert problem for the Kinnersley–Chitre transformations
  20. 1981 Isidore Hauser & Frederick J. Ernst, Proof of a Geroch conjecture
  21. 1982 Dong-sheng Guo & Frederick J. Ernst, Electrovac generalization of Neugebauer's N = 2 solution of the Einstein vacuum field equations
  22. 1983 Y. Chen, Dong-sheng Guo & Frederick J. Ernst, Charged spinning mass field involving rational functions
  23. 1983 Cornelius Hoenselares & Frederick J. Ernst, Remarks on the Tomimatsu–Sato metrics
  24. 1987 Frederick J. Ernst, Alberto Garcia D & Isidore Hauser, Colliding gravitational plane waves with noncollinear polarization. I
  25. 1987 Frederick J. Ernst, Alberto Garcia D & Isidore Hauser, Colliding gravitational plane waves with noncollinear polarization. II
  26. 1988 Frederick J. Ernst, Alberto Garcia D & Isidore Hauser, Colliding gravitational plane waves with noncollinear polarization. III
  27. 1989 Wei Li & Frederick J. Ernst, A family of electrovac colliding wave solutions of Einstein's equations
  28. 1989 Isidore Hauser & Frederick J. Ernst, Initial value problem for colliding gravitational plane waves. I
  29. 1989 Isidore Hauser & Frederick J. Ernst, Initial value problem for colliding gravitational plane waves. II
  30. 1990 Isidore Hauser & Frederick J. Ernst, Initial value problem for colliding gravitational plane waves. III
  31. 1990 Cornelius Hoenselares & Frederick J. Ernst, Matching pp waves to the Kerr metric
  32. 1991 Wei Li, Isidore Hauser & Frederick J. Ernst, Colliding gravitational plane waves with noncollinear polarizations
  33. 1991 Wei Li, Isidore Hauser & Frederick J. Ernst, Colliding gravitational waves with Killing–Cauchy horizons
  34. 1991 Wei Li, Isidore Hauser & Frederick J. Ernst, Colliding wave solutions of the Einstein–Maxwell field equations
  35. 1991 Isidore Hauser & Frederick J. Ernst, Initial value problem for colliding gravitational plane waves. IV
  36. 1991 Wei Li, Isidore Hauser & Frederick J. Ernst, Nonimpulsive colliding gravitational waves with noncollinear polarizations
  37. 1993 Frederick J. Ernst & Isidore Hauser, On Gürses's symmetries of the Einstein equations
This article is issued from Wikipedia - version of the Monday, April 04, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.