Euler integral

In mathematics, there are two types of Euler integral:[1]

1. Euler integral of the first kind: the Beta function
\mathrm{\Beta}(x,y)= \int_0^1t^{x-1}(1-t)^{y-1}\,dt =\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
2. Euler integral of the second kind: the Gamma function
\Gamma(z) = \int_0^\infty  t^{z-1}\,e^{-t}\,dt

For positive integers m and n

\mathrm{\Beta}(n,m)= {(n-1)!(m-1)! \over (n+m-1)!}={n+m \over nm{n+m \choose n}}
\Gamma(n) = (n-1)! \,

See also

References

  1. Jeffrey, Alan; and Dai, Hui-Hui (2008). Handbook of Mathematical Formulas 4th Ed. Academic Press. ISBN 978-0-12-374288-9. pp. 234-235


This article is issued from Wikipedia - version of the Monday, February 09, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.