Fax
Fax (short for facsimile), sometimes called telecopying or telefax (the latter short for telefacsimile), is the telephonic transmission of scanned printed material (both text and images), normally to a telephone number connected to a printer or other output device. The original document is scanned with a fax machine (or a telecopier), which processes the contents (text or images) as a single fixed graphic image, converting it into a bitmap, and then transmitting it through the telephone system in the form of audio-frequency tones. The receiving fax machine interprets the tones and reconstructs the image, printing a paper copy.[1] Early systems used direct conversions of image darkness to audio tone in a continuous or analog manner. Since the 1980s, most machines modulate the transmitted audio frequencies using a digital representation of the page which is compressed to quickly transmit areas which are all-white or all-black.
History
Wire transmission
Scottish inventor Alexander Bain worked on chemical mechanical fax type devices and in 1846 was able to reproduce graphic signs in laboratory experiments. He received British patent 9745 on May 27, 1843 for his "Electric Printing Telegraph."[2] Frederick Bakewell made several improvements on Bain's design and demonstrated a telefax machine. The Pantelegraph was invented by the Italian physicist Giovanni Caselli. He introduced the first commercial telefax service between Paris and Lyon in 1865, some 11 years before the invention of the telephone.[3][4]
In 1881, English inventor Shelford Bidwell constructed the scanning phototelegraph that was the first telefax machine to scan any two-dimensional original, not requiring manual plotting or drawing. Around 1900, German physicist Arthur Korn invented the Bildtelegraph, widespread in continental Europe especially, since a widely noticed transmission of a wanted-person photograph from Paris to London in 1908, used until the wider distribution of the radiofax. Its main competitors were the Bélinographe by Édouard Belin first, then since the 1930s the Hellschreiber, invented in 1929 by German inventor Rudolf Hell, a pioneer in mechanical image scanning and transmission.
The 1888 invention of the telautograph by Elisha Grey marked a further development in fax technology, allowing users to send signatures over long distances, thus allowing the verification of identification or ownership over long distances.[5]
On May 19, 1924, scientists of the AT&T Corporation "by a new process of transmitting pictures by electricity" sent 15 photographs by telephone from Cleveland to New York City, such photos suitable for newspaper reproduction. Previously, photographs had been sent over the radio using this process.[6]
The Western Union "Deskfax" fax machine, announced in 1948, was a compact machine that fit comfortably on a desktop, using special spark printer paper.[7]
Wireless transmission
As a designer for the Radio Corporation of America (RCA), in 1924, Richard H. Ranger invented the wireless photoradiogram, or transoceanic radio facsimile, the forerunner of today’s "fax" machines. A photograph of President Calvin Coolidge sent from New York to London on November 29, 1924 became the first photo picture reproduced by transoceanic radio facsimile. Commercial use of Ranger’s product began two years later. Also in 1924, Herbert E. Ives of AT&T Corporation transmitted and reconstructed the first color facsimile, using color separations. Around 1952 or so, Finch Facsimile, a highly developed machine, was described in detail in a book; it was never manufactured in quantity.
By the late 1940s, radiofax receivers were sufficiently miniaturized to be fitted beneath the dashboard of Western Union's "Telecar" telegram delivery vehicles.[7]
In the 1960s, the United States Army transmitted the first photograph via satellite facsimile to Puerto Rico from the Deal Test Site using the Courier satellite.
Radio fax is still in limited use today for transmitting weather charts and information to ships at sea.
Telephone transmission
In 1964, Xerox Corporation introduced (and patented) what many consider to be the first commercialized version of the modern fax machine, under the name (LDX) or Long Distance Xerography. This model was superseded two years later with a unit that would truly set the standard for fax machines for years to come. Up until this point facsimile machines were very expensive and hard to operate. In 1966, Xerox released the Magnafax Telecopier, a smaller, 46-pound facsimile machine. This unit was far easier to operate and could be connected to any standard telephone line. This machine was capable of transmitting a letter-sized document in about six minutes. The first sub-minute, digital fax machine was developed by Dacom, which built on digital data compression technology originally developed at Lockheed for satellite communication.[8][9]
By the late 1970s, many companies around the world (especially Japan), entered the fax market. Very shortly after a new wave of more compact, faster and efficient fax machines would hit the market. Xerox continued to refine the fax machine for years after their ground-breaking first machine. In later years it would be combined with copier equipment to create the hybrid machines we have today that copy, scan and fax. Some of the lesser known capabilities of the Xerox fax technologies included their Ethernet enabled Fax Services on their 8000 workstations in the early 1980s.
Prior to the introduction of the ubiquitous fax machine, one of the first being the Exxon Qwip[10] in the mid-1970s, facsimile machines worked by optical scanning of a document or drawing spinning on a drum. The reflected light, varying in intensity according to the light and dark areas of the document, was focused on a photocell so that the current in a circuit varied with the amount of light. This current was used to control a tone generator (a modulator), the current determining the frequency of the tone produced. This audio tone was then transmitted using an acoustic coupler (a speaker, in this case) attached to the microphone of a common telephone handset. At the receiving end, a handset’s speaker was attached to an acoustic coupler (a microphone), and a demodulator converted the varying tone into a variable current that controlled the mechanical movement of a pen or pencil to reproduce the image on a blank sheet of paper on an identical drum rotating at the same rate.
Computer facsimile interface
In 1985, Dr. Hank Magnuski, founder of GammaLink, produced the first computer fax board, called GammaFax.
Fax in the 21st century
Although businesses usually maintain some kind of fax capability, the technology has faced increasing competition from Internet-based alternatives. In some countries, because electronic signatures on contracts are not yet recognized by law, while faxed contracts with copies of signatures are, fax machines enjoy continuing support in business.[11] In Japan, faxes are still used extensively for cultural and graphemic reasons and are available for sending to both domestic and international recipients from over 81% of all convenience stores nationwide. Convenience-store fax machines commonly print the slightly re-sized content of the sent fax in the electronic confirmation-slip, in A4 paper size.[12][13][14]
In many corporate environments, freestanding fax machines have been replaced by fax servers and other computerized systems capable of receiving and storing incoming faxes electronically, and then routing them to users on paper or via an email (which may be secured). Such systems have the advantage of reducing costs by eliminating unnecessary printouts and reducing the number of inbound analog phone lines needed by an office.
The once ubiquitous fax machine has also begun to disappear from the small office and home office environments. Remotely hosted fax-server services are widely available from VoIP and e-mail providers allowing users to send and receive faxes using their existing e-mail accounts without the need for any hardware or dedicated fax lines. Personal computers have also long been able to handle incoming and outgoing faxes using analogue modems or ISDN, eliminating the need for a stand-alone fax machine. These solutions are often ideally suited for users who only very occasionally need to use fax services. There are 17 million fax machines in the US, about one every 4.47 square miles.
Capabilities
There are several indicators of fax capabilities: Group, class, data transmission rate, and conformance with ITU-T (formerly CCITT) recommendations. Since the 1968 Carterphone decision, most fax machines have been designed to connect to standard PSTN lines and telephone numbers.
Group
Analog
Group 1 and 2 faxes are sent in the same manner as a frame of analog television, with each scanned line transmitted as a continuous analog signal. Horizontal resolution depended upon the quality of the scanner, transmission line, and the printer. Analog fax machines are obsolete and no longer manufactured. ITU-T Recommendations T.2 and T.3 were withdrawn as obsolete in July 1996.
- Group 1 faxes conform to the ITU-T Recommendation T.2. Group 1 faxes take six minutes to transmit a single page, with a vertical resolution of 96 scan lines per inch. Group 1 fax machines are obsolete and no longer manufactured.
- Group 2 faxes conform to the ITU-T Recommendations T.30 and T.3. Group 2 faxes take three minutes to transmit a single page, with a vertical resolution of 96 scan lines per inch. Group 2 fax machines are almost obsolete, and are no longer manufactured. Group 2 fax machines can interoperate with Group 3 fax machines.
Digital
A major breakthrough in the development of the modern facsimile system was the result of digital technology, where the analog signal from scanners was digitized and then compressed, resulting in the ability to transmit high rates of data across standard phone lines. The first digital fax machine was the Dacom Rapidfax first sold in late 1960s, which incorporated digital data compression technology developed by Lockheed for transmission of images from satellites.[8][9]
Group 3 and 4 faxes are digital formats, and take advantage of digital compression methods to greatly reduce transmission times.
- Group 3 faxes conform to the ITU-T Recommendations T.30 and T.4. Group 3 faxes take between six and fifteen seconds to transmit a single page (not including the initial time for the fax machines to handshake and synchronize). The horizontal and vertical resolutions are allowed by the T.4 standard to vary among a set of fixed resolutions:
- Horizontal: 100 scan lines per inch
- Vertical: 100 scan lines per inch ("Basic")
- Horizontal: 200 or 204 scan lines per inch
- Vertical: 100 or 98 scan lines per inch ("Standard")
- Vertical: 200 or 196 scan lines per inch ("Fine")
- Vertical: 400 or 391 (note not 392) scan lines per inch ("Superfine")
- Horizontal: 300 scan lines per inch
- Vertical: 300 scan lines per inch
- Horizontal: 400 or 408 scan lines per inch
- Vertical: 400 or 391 scan lines per inch ("Ultrafine")
- Horizontal: 100 scan lines per inch
- Group 4 faxes conform to the ITU-T Recommendations T.563, T.503, T.521, T.6, T.62, T.70, T.411 to T.417. They are designed to operate over 64 kbit/s digital ISDN circuits. The allowed resolutions, a superset of those in the T.4 recommendation, are specified in the T.6 recommendation.[15]
Fax Over IP (FoIP) can transmit and receive pre-digitized documents at near realtime speeds using ITU-T recommendation T.38 to send digitised images over an IP network using JPEG compression. T.38 is designed to work with VoIP services and often supported by analog telephone adapters used by legacy fax machines that need to connect through a VoIP service. Scanned documents are limited to the amount of time the user takes to load the document in a scanner and for the device to process a digital file. The resolution can vary from as little as 150 DPI to 9600 DPI or more. This type of faxing is not related to the e-mail to fax service that still uses fax modems at least one way.
Class
Computer modems are often designated by a particular fax class, which indicates how much processing is offloaded from the computer's CPU to the fax modem.
- Class 1 fax devices do fax data transfer where the T.4/T.6 data compression and T.30 session management are performed by software on a controlling computer. This is described in ITU-T recommendation T.31.[16]
- Class 2 fax devices perform T.30 session management themselves, but the T.4/T.6 data compression is performed by software on a controlling computer. The relevant ITU-T recommendation is T.32.[16]
- Class 2.0 is different from Class 2.
- Class 2.1 is an improvement of Class 2.0. Class 2.1 fax devices are referred to as "super G3"; they seem to be a little faster than Class 1/2/2.0.
- Class 3 fax devices are responsible for virtually the entire fax session, given little more than a phone number and the text to send (including rendering ASCII text as a raster image). These devices are not common.
Data transmission rate
Several different telephone line modulation techniques are used by fax machines. They are negotiated during the fax-modem handshake, and the fax devices will use the highest data rate that both fax devices support, usually a minimum of 14.4 kbit/s for Group 3 fax.
ITU Standard Released Date Data Rates (bit/s) Modulation Method V.27 1988 4800, 2400 PSK V.29 1988 9600, 7200, 4800 QAM V.17 1991 14,400; 12,000; 9600; 7200 TCM V.34 1994 28,800 QAM V.34bis 1998 33,600 QAM ISDN 1986 64,000 digital
Note that "Super Group 3" faxes use V.34bis modulation that allows a data rate of up to 33.6 kbit/s.
Compression
As well as specifying the resolution (and allowable physical size of the image being faxed), the ITU-T T.4 recommendation specifies two compression methods for decreasing the amount of data that needs to be transmitted between the fax machines to transfer the image. The two methods defined in T.4 are:[17]
- Modified Huffman (MH), and
- Modified READ (MR) (Relative Element Address Designate[18]), optional
An additional method is specified in T.6:[15]
- Modified Modified READ (MMR)
Later, other compression techniques were added as options to ITU-T recommendation T.30, such as the more efficient JBIG (T.82, T.85) for bi-level content, and JPEG (T.81), T.43, MRC (T.44), and T.45 for grayscale, palette, and colour content.[19] Fax machines can negotiate at the start of the T.30 session to use the best technique implemented on both sides.
Modified Huffman
Modified Huffman (MH), specified in T.4 as the one-dimensional coding scheme, is a codebook-based run-length encoding scheme optimised to efficiently compress whitespace.[17] As most faxes consist mostly of white space, this minimises the transmission time of most faxes. Each line scanned is compressed independently of its predecessor and successor.[17]
Modified READ
Modified READ (MR), specified as an optional two-dimensional coding scheme in T.4, encodes the first scanned line using MH.[17] The next line is compared to the first, the differences determined, and then the differences are encoded and transmitted.[17] This is effective as most lines differ little from their predecessor. This is not continued to the end of the fax transmission, but only for a limited number of lines until the process is reset and a new 'first line' encoded with MH is produced. This limited number of lines is to prevent errors propagating throughout the whole fax, as the standard does not provide for error-correction. MR is an optional facility, and some fax machines do not use MR in order to minimise the amount of computation required by the machine. The limited number of lines is two for 'Standard' resolution faxes, and four for 'Fine' resolution faxes.
Modified Modified READ
The ITU-T T.6 recommendation adds a further compression type of Modified Modified READ (MMR), which simply allows for a greater number of lines to be coded by MR than in T.4.[15] This is because T.6 makes the assumption that the transmission is over a circuit with a low number of line errors such as digital ISDN. In this case, there is no maximum number of lines for which the differences are encoded.
JBIG
In 1999, ITU-T recommendation T.30 added JBIG (ITU-T T.82) as another lossless bi-level compression algorithm, or more precisely a "fax profile" subset of JBIG (ITU-T T.85). JBIG-compressed pages result in 20% to 50% faster transmission than MMR-compressed pages, and up to 30-times faster transmission if the page includes halftone images.
JBIG performs adaptive compression, that is both the encoder and decoder collect statistical information about the transmitted image from the pixels transmitted so far, in order to predict the probability for each next pixel being either black or white. For each new pixel, JBIG looks at ten nearby, previously transmitted pixels. It counts, how often in the past the next pixel has been black or white in the same neighborhood, and estimates from that the probability distribution of the next pixel. This is fed into an arithmetic coder, which adds only a small fraction of a bit to the output sequence if the more probable pixel is then encountered.
The ITU-T T.85 "fax profile" constrains some optional features of the full JBIG standard, such that codecs do not have to keep data about more than the last three pixel rows of an image in memory at any time. This allows the streaming of "endless" images, where the height of the image may not be known until the last row is transmitted.
ITU-T T.30 allows fax machines to negotiate one of two options of the T.85 "fax profile":
- In "basic mode", the JBIG encoder must split the image into horizontal stripes of 128 lines (parameter L0=128), and restart the arithmetic encoder for each stripe.
- In "option mode", there is no such constraint.
Matsushita Whiteline Skip
A proprietary compression scheme employed on Panasonic fax machines is Matsushita Whiteline Skip (MWS). It can be overlaid on the other compression schemes, but is operative only when two Panasonic machines are communicating with one another. This system detects the blank scanned areas between lines of text, and then compresses several blank scan lines into the data space of a single character. (JBIG implements a similar technique called "typical prediction", if header flag TPBON is set to 1.)
Typical characteristics
Group 3 fax machines transfer one or a few printed or handwritten pages per minute in black-and-white (bitonal) at a resolution of 204×98 (normal) or 204×196 (fine) dots per square inch. The transfer rate is 14.4 kbit/s or higher for modems and some fax machines, but fax machines support speeds beginning with 2400 bit/s and typically operate at 9600 bit/s. The transferred image formats are called ITU-T (formerly CCITT) fax group 3 or 4. Group 3 faxes have the suffix .g3
and the MIME type image/g3fax.
The most basic fax mode transfers black and white colors only. The original page is scanned in a resolution of 1728 pixels/line and 1145 lines/page (for A4). The resulting raw data is compressed using a modified Huffman code optimized for written text, achieving average compression factors of around 20. Typically a page needs 10 s for transmission, instead of about 3 minutes for the same uncompressed raw data of 1728×1145 bits at a speed of 9600 bit/s. The compression method uses a Huffman codebook for run lengths of black and white runs in a single scanned line, and it can also use the fact that two adjacent scanlines are usually quite similar, saving bandwidth by encoding only the differences.
Fax classes denote the way fax programs interact with fax hardware. Available classes include Class 1, Class 2, Class 2.0 and 2.1, and Intel CAS. Many modems support at least class 1 and often either Class 2 or Class 2.0. Which is preferable to use depends on factors such as hardware, software, modem firmware, and expected use.
Printing process
Fax machines from the 1970s to the 1990s often used direct thermal printers with rolls of thermal paper as their printing technology, but since the mid-1990s there has been a transition towards plain-paper faxes:- thermal transfer printers, inkjet printers and laser printers.
One of the advantages of inkjet printing is that inkjets can affordably print in color; therefore, many of the inkjet-based fax machines claim to have color fax capability. There is a standard called ITU-T30e (formally ITU-T Recommendation T.30 Annex E [20]) for faxing in color; unfortunately, it is not widely supported, so many of the color fax machines can only fax in color to machines from the same manufacturer.
Stroke speed
Stroke speed in facsimile systems is the rate at which a fixed line perpendicular to the direction of scanning is crossed in one direction by a scanning or recording spot. Stroke speed is usually expressed as a number of strokes per minute. When the fax system scans in both directions, the stroke speed is twice this number. In most conventional 20th century mechanical systems, the stroke speed is equivalent to drum speed.[21]
Fax paper
As a precaution, thermal fax paper is typically not accepted in archives or as documentary evidence in some courts of law unless photocopied. This is because the image-forming coating is eradicable and brittle, and it tends to detach from the medium after a long time in storage.[22]
Internet fax
One popular alternative is to subscribe to an Internet fax service, allowing users to send and receive faxes from their personal computers using an existing email account. No software, fax server or fax machine is needed. Faxes are received as attached TIFF or PDF files, or in proprietary formats that require the use of the service provider's software. Faxes can be sent or retrieved from anywhere at any time that a user can get Internet access. Some services offer secure faxing to comply with stringent HIPAA and Gramm–Leach–Bliley Act requirements to keep medical information and financial information private and secure. Utilizing a fax service provider does not require paper, a dedicated fax line, or consumable resources.[23]
Another alternative to a physical fax machine is to make use of computer software which allows people to send and receive faxes using their own computers, utilizing fax servers and unified messaging. A virtual (email) fax can be printed out and then signed and scanned back to computer before being emailed. Also the sender can attach a digital signature to the document file.
With the surging popularity of mobile phones, virtual fax machines can now be downloaded as applications for Android and iOS. These applications make use of the phone's internal camera to scan fax documents for upload or they can import from various cloud services. [24]
See also
- Black fax
- Called subscriber identification (CSID)
- Error correction mode (ECM)
- Fax art
- Fax demodulator
- Fax modem
- Fax server
- Faxlore
- Fultograph
- Internet fax
- Junk fax
- Radiofax—image transmission over HF radio
- Slow-scan television
- T.38 Fax-over-IP
- Telautograph
- Telex
- Transmitting Subscriber Identification (TSID)
References
- ↑ Rouse, Margaret (June 2006). "What is fax?". SearchNetworking. Retrieved 25 July 2012.
- ↑ “Mr. Bain’s Electric Printing Telegraph,” Mechanics' Magazine April 13, 1844, 268-70
- ↑ "Istituto Tecnico Industriale, Italy. Italian biography of Giovanni Caselli". Itisgalileiroma.it. Retrieved 2014-02-16.
- ↑ The Hebrew University of Jerusalem - Giovanni Caselli biography
- ↑ "The History of Fax – from 1843 to Present Day". Fax Authority. Retrieved 25 July 2012.
- ↑ The Montreal Gazette, May 20, 1924, page 10, column 3
- 1 2 G. H. Ridings, A Facsimilie transceiver for Pickup and Delivery of Telegrams, Western Union Technical Review, Vol. 3, No, 1 (January 1949); page 17-26.
- 1 2 3 The implementation of a personal computer-based digital facsimile information distribution system - Edward C. Chung, Ohio University, November 1991, page 2
- 1 2 Fax: The Principles and Practice of Facsimile Communication, Daniel M. Costigan, Chilton Book Company, 1971, pages 112–114, 213, 239
- ↑ An Exxon Sale To Harris Unit - The New York Times, February 22, 1985.
- ↑ Adams, Ken (7 November 2007). "Enforceability of Fax and Scanned Signature Pages". AdamsDrafting. Retrieved 25 July 2012.
- ↑ http://www.lawson.co.jp/service/counter/fax.html
- ↑ Fackler, Martin (13 February 2013). "In High-Tech Japan, the Fax Machines Roll On". The New York Times. Retrieved 14 February 2013.
- ↑ Oi, Mariko (2012-07-31). "BBC News - Japan and the fax: A love affair". Bbc.co.uk. Retrieved 2014-02-16.
- 1 2 3 "T.6: Facsimile coding schemes and coding control functions for Group 4 facsimile apparatus". ITU-T. November 1988. Retrieved 2013-12-28.
- 1 2 Peterson, Kerstin Day (2000). Business telecom systems: a guide to choosing the best technologies and services. Focal Press. pp. 191–192. ISBN 1578200415. Retrieved 2011-04-02.
- 1 2 3 4 5 "T.4: Standardization of Group 3 facsimile terminals for document transmission". ITU-T. 2011-03-14. Retrieved 2013-12-28.
- ↑ International digital facsimile coding standards, Hunter, R., and Robinson, A.H., Proceedings of the IEEE Volume 68 Issue 7, pp 854–867, July 1980
- ↑ "T.30: Procedures for document facsimile transmission in the general switched telephone network". ITU-T. 2014-05-15. Retrieved 2013-12-28.
- ↑ tsbmail. "T.30 : Procedures for document facsimile transmission in the general switched telephone network". Itu.int. Retrieved 2014-02-16.
- ↑ This article incorporates public domain material from the General Services Administration document "Federal Standard 1037C" (in support of MIL-STD-188).
- ↑ "4.12 Filing rules: 19.Newspaper extracts or thermal facsimile paper should not be preserved as archives. Such extracts should be photocopied and the copy preserved. The original can then be destroyed." Office of Corporate & Legal Affairs, University College Cork, Ireland
- ↑ "Online Fax vs Traditional Fax". eFax. 16 May 2013. Retrieved 8 December 2013.
- ↑ "You Can Now Send A Fax From Your Phone". PhoneFax. 11 October 2015. Retrieved 12 October 2015.
Further reading
- Coopersmith, Jonathan, Faxed: The Rise and Fall of the Fax Machine (Johns Hopkins University Press, 2015) 308 pp.
External links
Look up fax or facsimile in Wiktionary, the free dictionary. |
Wikimedia Commons has media related to Fax machines. |
- Group 3 Facsimile Communication a '97 essay with technical details on compression and error codes, and call establishment and release.
- ITU T.30 Recommendation
|
|