Flag (geometry)

For a comparable but different concept from linear algebra, see flag (linear algebra).
Face diagram of a square pyramid showing one of its flags

In (polyhedral) geometry, a flag is a sequence of faces of a polytope, each contained in the next, with just one face from each dimension.

More formally, a flag ψ of an n-polytope is a set {F1, F0, ..., Fn} such that FiFi+1 (1 ≤ in  1) and there is precisely one Fi in ψ for each i, (1 ≤ in). Since, however, the minimal face F1 and the maximal face Fn must be in every flag, they are often omitted from the list of faces, as a shorthand. These latter two are called improper faces.

For example, a flag of a polyhedron comprises one vertex, one edge incident to that vertex, and one polygonal face incident to both, plus the two improper faces. A flag of a polyhedron is sometimes called a "dart".

A polytope may be regarded as regular if, and only if, its symmetry group is transitive on its flags. This definition excludes chiral polytopes.

Incidence geometry

In the more abstract setting of incidence geometry, which is a set having a symmetric and reflexive relation called incidence defined on its elements, a flag is a set of elements that are mutually incident.[1] This level of abstraction generalizes both the polyhedral concept given above as well as the related flag concept from linear algebra.

A flag is maximal if it is not contained in a larger flag. When all maximal flags of an incidence geometry have the same size, this common value is the rank of the geometry.

Notes

References

This article is issued from Wikipedia - version of the Sunday, November 03, 2013. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.