Florigen

Florigen (or flowering hormone) is the hypothesized hormone-like molecule responsible for controlling and/or triggering flowering in plants. Florigen is produced in the leaves, and acts in the shoot apical meristem of buds and growing tips. It is known to be graft-transmissible, and even functions between species. However, despite having been sought since the 1930s, the exact nature of florigen is still a mystery.

Mechanism

Central to the hunt for florigen is an understanding of how plants use seasonal changes in day length to mediate flowering—a mechanism known as photoperiodism. Plants which exhibit photoperiodism may be either 'short day' or 'long day' plants, which in order to flower require short days or long days respectively. Although plants in fact distinguish day length from night length.[1]

The current model suggests the involvement of multiple different factors. Research into florigen is predominately centred on the model organism and long day plant, Arabidopsis thaliana. Whilst much of the florigen pathways appear to be well conserved in other studied species, variations do exist.[2] The mechanism may be broken down into three stages: photoperiod-regulated initiation, signal translocation via the phloem, and induction of flowering at the shoot apical meristem.

Initiation

In Arabidopsis thaliana, the signal is initiated by the production of messenger RNA (mRNA) coding a transcription factor called CONSTANS (CO). CO mRNA is produced approximately 12 hours after dawn, a cycle regulated by the plant's biological clock.[3] This mRNA is then translated into CO protein. However CO protein is stable only in light, so levels stay low throughout short days and are only able to peak at dusk during long days when there is still a little light.[4][5] CO protein promotes transcription of another gene called Flowering Locus T (FT). By this mechanism, CO protein may only reach levels capable of promoting FT transcription when exposed to long days. Hence, the transmission of florigen—and thus, the induction of flowering—relies on a comparison between the plant's perception of day/night and its own internal biological clock.[2]

Translocation

The FT protein resulting from the short period of CO transcription factor activity is then transported via the phloem to the shoot apical meristem.[6][7]

Flowering

At the shoot apical meristem, the FT protein interacts with a transcription factor (FD protein) to activate floral identity genes, thus inducing flowering.[8][9] Specifically, arrival of FT at the shoot apical meristem and formation of the FT/FD heterodimer is followed by the increased expression of at least one direct target gene, APETALA 1 (AP1),[8] along with other targets, such as SOC1 and several SPL genes, which are targeted by a microRNA.[10]

Research history

Florigen was first described by Soviet Armenian plant physiologist Mikhail Chailakhyan, who in 1937 demonstrated that floral induction can be transmitted through a graft from an induced plant to one that has not been induced to flower.[11] Anton Lang showed that several long-day plants and biennials could be made to flower by treatment with gibberellin, when grown under a non-flower-inducing (or non-inducing) photoperiod. This led to the suggestion that florigen may be made up of two classes of flowering hormones: Gibberellins and Anthesins.[12] It was later postulated that during non-inducing photoperiods, long-day plants produce anthesin, but no gibberellin while short-day plants produce gibberellin but no anthesin.[11] However, these findings did not account for the fact that short-day plants grown under non-inducing conditions (thus producing gibberellin) will not cause flowering of grafted long-day plants that are also under noninductive conditions (thus producing anthesin).

As a result of the problems with isolating florigen, and of the inconsistent results acquired, it has been suggested that florigen does not exist as an individual substance; rather, florigen's effect could be the result of a particular ratio of other hormones.[13][14] However, more recent findings indicate that florigen does exist and is produced, or at least activated, in the leaves of the plant and that this signal is then transported via the phloem to the growing tip at the shoot apical meristem where the signal acts by inducing flowering. In Arabidopsis thaliana, some researchers have identified this signal as mRNA coded by the FLOWERING LOCUS T (FT) gene, others as the resulting FT protein.[15] First report of FT mRNA being the signal transducer that moves from leaf to shoot apex came from the publication in Science Magazine. However, in 2007 other group of scientists made a breakthrough saying that it is not the mRNA, but the FT Protein that is transmitted from leaves to shoot possibly acting as "Florigen".[16] The initial article[17] that described FT mRNA as flowering stimuli was retracted by the authors themselves.

References

  1. Garner W.W., Allard H.A. (1920). "Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants". Journal of Agricultural Research 18 (7): 553–606. doi:10.1175/1520-0493(1920)48<415b:EOTRLO>2.0.CO;2.
  2. 1 2 Turck, F., Fornara, F., Coupland, G. (2008). "Regulation and Identity of Florigen: FLOWERING LOCUS T Moves Centre Stage". Annual Review of Plant Biology 59: 573–594. doi:10.1146/annurev.arplant.59.032607.092755. PMID 18444908.
  3. Mizoguchi, T., Wright, L., Fujiwara, S., Cremer, F., Lee, K.; et al. (2005). "Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis". Plant Cell 17 (8): 2255–2270. doi:10.1105/tpc.105.033464. PMC 1182487. PMID 16006578.
  4. Yanovsky, M.J., Kay, S.A. (2002). "Molecular basis of seasonal time measurement in Arabidopsis". Nature 419 (6904): 308–312. doi:10.1038/nature00996. PMID 12239570.
  5. Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., Coupland, G. (2004). "Photoreceptor regulation of CONSTANS protein in photoperiodic flowering". Science 303 (5660): 1003–1006. doi:10.1126/science.1091761. PMID 14963328.
  6. Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q.; et al. (2007). "FT protein movement contributes to long distance signalling in floral induction of Arabidopsis". Science 316 (5827): 1030–1033. doi:10.1126/science.1141752. PMID 17446353.
  7. Mathieu J, Warthmann N, Küttner F, Schmid M (2007). "Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis". Curr Biol 17: 1055–60. doi:10.1016/j.cub.2007.05.009. PMID 17540570.
  8. 1 2 Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005). "Integration of spatial and temporal information during floral induction in Arabidopsis". Science 309 (5737): 1056–1059. doi:10.1126/science.1114358. PMID 16099980.
  9. Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A.; et al. (2005). "FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex". Science 309 (5737): 1052–1056. doi:10.1126/science.1115983. PMID 16099979.
  10. Wang JW, Czech B, Weigel D. (2009). "miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana". Cell 138 (4): 738–49. doi:10.1016/j.cell.2009.06.014. PMID 19703399.
  11. 1 2 Chaïlakhyan, M.K. (1985). "Hormonal regulation of reproductive development in higher plants". Biologia Plantarium 27 (4–5): 292–302. doi:10.1007/BF02879865.
  12. Chaïlakhyan, M.K. (1975). "Substances of plant flowering". Biologia Plantarium 17: 1–11. doi:10.1007/BF02921064.
  13. Zeevaart, J.A.D. (1976). "Physiology of flower formation". Annual Review of Plant Physiology and Plant Molecular Biology 27: 321–348. doi:10.1146/annurev.pp.27.060176.001541.
  14. Bernier, G., Havelange, A., Houssa, C., Petitjean, A., and Lejeune, P. (1993). "Physiological signals that induce flowering". Plant Cell 5 (10): 1147–1155. doi:10.1105/tpc.5.10.1147. PMC 160348. PMID 12271018.
  15. Notaguchi, Michitaka; Mitsutomo Abe; Takahiro Kimura; Yasufumi Daimon; Toshinori Kobayashi; Ayako Yamaguchi; Yuki Tomita; Koji Dohi; Masashi Mori; Takashi Araki (2008). "Long-Distance, Graft-Transmissible Action of Arabidopsis FLOWERING LOCUS T Protein to Promote Flowering". Plant Cell Physiol 49 (11): 1645–1658. doi:10.1093/pcp/pcn154. PMID 18849573. Retrieved 29 January 2011.
  16. http://www.sciencemag.org/content/316/5823/367.2
  17. http://www.sciencemag.org/content/309/5741/1694.abstract?sid=eeacbc4d-66b7-4785-9a0f-8554dd1654b2

External links

This article is issued from Wikipedia - version of the Sunday, February 21, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.