Fougèrite
Fougèrite is a relatively recently described naturally-occurring green rust mineral. It is the archetype of the fougèrite group in the larger hydrotalcite supergroup of naturally-occurring layered double hydroxides.[1] The structure is based on brucite-like layers containing Fe2+ and Fe3+ cations, O2− and OH− anions, with loosely bound [CO3]2− groups and H2O molecules between the layers. Fougèrite crystallizes in trigonal system. The ideal formula for fougèrite is [Fe2+4Fe3+2(OH)12][CO3]·3H2O. Higher degrees of oxidation produce the other members of the fougèrite group, namely trébeurdenite, [Fe2+2Fe3+4O2(OH)10][CO3]·3H2O and mössbauerite, [Fe3+6O4(OH)8][CO3]·3H2O.
Fougèrite was first found in forested soils near Fougères, Brittany, France, and recognised as a valid mineral species by the International Mineralogical Association in 2002.[2] It is blue-green to bluish-gray in colour, and resembles clay minerals in habit, forming hexagonal platelets of submicron diameter. In this environment, it is intimately intergrown with trébeurdenite, to give varying overall ratios of Fe2+:Fe3+. The existence of two intergrown fixed-composition phases has been demonstrated by Mössbauer spectroscopy. The mineral is unstable in air, and decomposes by oxidation, dehydration and decarbonation, to ferrihydrite, and ultimately to lepidocrocite or goethite, Fe3+O(OH).[3][4]
See also
References
- ↑ Mills, S.J., Christy, A.G., Génin J.-M.R., Kameda, T. and Colombo, F. 2012: Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides, Mineralogical Magazine, 76, 1289-1336.
- ↑ Fougèrite data on Mindat.org
- ↑ Trolard F., Bourrié G., Abdelmoula M., Refait P. and Feder F. 2007: Fougerite, a new mineral of the pyroaurite-iowaite group: description and crystal structure, Clays and Clay Minerals, vol. 55, no. 3, p. 323-334; doi:10.1346/CCMN.2007.0550308
- ↑ Génin J.-M. R., Aïssa R., Génin A., Abdelmoula M., Benali O., Ernstsen V., Ona-Nguema G., Upadhyay Ch. and Ruby Ch.; 2005: Fougerite and FeII-III hydroxycarbonate green rust; ordering, deprotonation and/or cation substitution; structure of hydrotalcite-like compounds and mythic ferrosic hydroxide Fe(OH)2+x, Solid State Sciences, vol. 7., no. 5, p. 545-572. doi:10.1016/j.solidstatesciences.2005.02.001.