Subcategory

In mathematics, a subcategory of a category C is a category S whose objects are objects in C and whose morphisms are morphisms in C with the same identities and composition of morphisms. Intuitively, a subcategory of C is a category obtained from C by "removing" some of its objects and arrows.

Formal definition

Let C be a category. A subcategory S of C is given by

such that

These conditions ensure that S is a category in its own right: the collection of objects is ob(S), the collection of morphisms is hom(S), and the identities and composition are as in C. There is an obvious faithful functor I : SC, called the inclusion functor which takes objects and morphisms to themselves.

Let S be a subcategory of a category C. We say that S is a full subcategory of C if for each pair of objects X and Y of S

\mathrm{Hom}_\mathcal{S}(X,Y)=\mathrm{Hom}_\mathcal{C}(X,Y).

A full subcategory is one that includes all morphisms between objects of S. For any collection of objects A in C, there is a unique full subcategory of C whose objects are those in A.

Examples

Embeddings

Given a subcategory S of C the inclusion functor I : SC is both faithful and injective on objects. It is full if and only if S is a full subcategory.

Some authors define an embedding to be a full and faithful functor. Such a functor is necessarily injective on objects up-to-isomorphism. For instance, the Yoneda embedding is an embedding in this sense.

Some authors define an embedding to be a full and faithful functor that is injective on objects (strictly).[1]

Other authors define a functor to be an embedding if it is faithful and injective on objects. Equivalently, F is an embedding if it is injective on morphisms. A functor F is then called a full embedding if it is a full functor and an embedding.

For any (full) embedding F : BC the image of F is a (full) subcategory S of C and F induces an isomorphism of categories between B and S. If F is not strictly injective on objects, the image of F is equivalent to B.

In some categories, one can also speak of morphisms of the category being embeddings.

Types of subcategories

A subcategory S of C is said to be isomorphism-closed or replete if every isomorphism k : XY in C such that Y is in S also belongs to S. An isomorphism-closed full subcategory is said to be strictly full.

A subcategory of C is wide or lluf (a term first posed by P. Freyd[2]) if it contains all the objects of C. A lluf subcategory is typically not full: the only full lluf subcategory of a category is that category itself.

A Serre subcategory is a non-empty full subcategory S of an abelian category C such that for all short exact sequences

0\to M'\to M\to M''\to 0

in C, M belongs to S if and only if both M' and M'' do. This notion arises from Serre's C-theory.

See also

Look up subcategory in Wiktionary, the free dictionary.

References

  1. van Oosten. "Basic category theory" (PDF).
  2. Freyd, Peter (1991). "Algebraically complete categories". Proceedings of the International Conference on Category Theory, Como, Italy (CT 1990). Lecture Notes in Mathematics 1488. Springer. pp. 95–104. doi:10.1007/BFb0084215.
This article is issued from Wikipedia - version of the Sunday, March 06, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.