Functional notation
| Function | |||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| x ↦ f(x) | |||||||||||||||||||||||||||||
| By domain and codomain | |||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||
| Classes/properties | |||||||||||||||||||||||||||||
| Constant · Identity · Linear · Polynomial · Rational · Algebraic · Analytic · Smooth · Continuous · Measurable · Injective · Surjective · Bijective | |||||||||||||||||||||||||||||
| Constructions | |||||||||||||||||||||||||||||
| Restriction · Composition · λ · Inverse | |||||||||||||||||||||||||||||
| Generalizations | |||||||||||||||||||||||||||||
| Partial · Multivalued · Implicit | |||||||||||||||||||||||||||||
Functional notation is the notation for expressing functions as
which was first used by Leonhard Euler in 1734.[1] In this notation, an inverse function is expressed as
.[2]
References
- ↑ Ron Larson, Bruce H. Edwards (2010), Calculus of a Single Variable, Cengage Learning, p. 19, ISBN 9780538735520
- ↑ W.T. Brande, A Dictionary of Science, Literature and Art, p. 683
This article is issued from Wikipedia - version of the Wednesday, June 11, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.