Gödel's ontological proof

Gödel's ontological proof is a formal argument for God's existence by the mathematician Kurt Gödel (1906–1978).

It is in a line of development that goes back to Anselm of Canterbury (1033–1109). St. Anselm's ontological argument, in its most succinct form, is as follows: "God, by definition, is that for which no greater can be conceived. God exists in the understanding. If God exists in the understanding, we could imagine Him to be greater by existing in reality. Therefore, God must exist." A more elaborate version was given by Gottfried Leibniz (1646–1716); this is the version that Gödel studied and attempted to clarify with his ontological argument.

Gödel left a fourteen-point outline of his philosophical beliefs in his papers. Points relevant to the ontological proof include

4. There are other worlds and rational beings of a different and higher kind.
5. The world in which we live is not the only one in which we shall live or have lived.
13. There is a scientific (exact) philosophy and theology, which deals with concepts of the highest abstractness; and this is also most highly fruitful for science.
14. Religions are, for the most part, bad—but religion is not.

History of Gödel's proof

The first version of the ontological proof in Gödel's papers is dated "around 1941". Gödel is not known to have told anyone about his work on the proof until 1970, when he thought he was dying. In February, he allowed Dana Scott to copy out a version of the proof, which circulated privately. In August 1970, Gödel told Oskar Morgenstern that he was "satisfied" with the proof, but Morgenstern recorded in his diary entry for 29 August 1970, that Gödel would not publish because he was afraid that others might think "that he actually believes in God, whereas he is only engaged in a logical investigation (that is, in showing that such a proof with classical assumptions (completeness, etc.) correspondingly axiomatized, is possible)."[1] Gödel died January 14, 1978. Another version, slightly different from Scott's, was found in his papers. It was finally published, together with Scott's version, in 1987.[2]

Morgenstern's diary is an important and usually reliable source for Gödel's later years, but the implication of the August 1970 diary entry—that Gödel did not believe in God—is not consistent with the other evidence. In letters to his mother, who was not a churchgoer and had raised Kurt and his brother as freethinkers,[3] Gödel argued at length for a belief in an afterlife.[4] He did the same in an interview with a skeptical Hao Wang, who said: "I expressed my doubts as G spoke [...] Gödel smiled as he replied to my questions, obviously aware that his answers were not convincing me."[5] Wang reports that Gödel's wife, Adele, two days after Gödel's death, told Wang that "Gödel, although he did not go to church, was religious and read the Bible in bed every Sunday morning."[6] In an unmailed answer to a questionnaire, Gödel described his religion as "baptized Lutheran (but not member of any religious congregation). My belief is theistic, not pantheistic, following Leibniz rather than Spinoza."[7]

Outline of Gödel's proof

The proof uses modal logic, which distinguishes between necessary truths and contingent truths. In the most common semantics for modal logic, many "possible worlds" are considered. A truth is necessary if it is true in all possible worlds. By contrast, a truth is contingent if it just happens to be the case, for instance, that "more than half of the planet is covered by water". If a statement happens to be true in our world, but is false in another world, then it is a contingent truth. A statement that is true in some world (not necessarily our own) is called a possible truth.

Furthermore, the proof uses higher-order (modal) logic because the definition of God employs an explicit quantification over properties.[8]

From axioms 1 through 4, Gödel argued that in some possible world there exists God. He used a sort of modal plenitude principle to argue this from the logical consistency of Godlikeness. Note that this property is itself positive, since it is the conjunction of the (infinitely many) positive properties.

Then, Gödel defined essences: if x is an object in some world, then the property P is said to be an essence of x if P(x) is true in that world and if P entails all other properties that x has in that world. We also say that x necessarily exists if for every essence P the following is true: in every possible world, there is an element y with P(y).

Since necessary existence is positive, it must follow from Godlikeness. Moreover, Godlikeness is an essence of God, since it entails all positive properties, and any nonpositive property is the negation of some positive property, so God cannot have any nonpositive properties. Since any Godlike object is necessarily existent, it follows that any Godlike object in one world is a Godlike object in all worlds, by the definition of necessary existence. Given the existence of a Godlike object in one world, proven above, we may conclude that there is a Godlike object in every possible world, as required.

From these hypotheses, it is also possible to prove that there is only one God in each world by Leibniz's law, the identity of indiscernibles: two or more objects are identical (are one and the same) if they have all their properties in common, and so, there would only be one object in each world that possesses property G. Gödel did not attempt to do so however, as he purposely limited his proof to the issue of existence, rather than uniqueness. This was more to preserve the logical precision of the argument than due to a penchant for polytheism. This uniqueness proof will only work if one supposes that the positiveness of a property is independent of the object to which it is applied, a claim which some have considered to be suspect .

To formalize the argument sketched above, the following definitions and axioms are needed:

Axiom 4 assumes that it is possible to single out positive properties from among all properties. Gödel comments that "Positive means positive in the moral aesthetic sense (independently of the accidental structure of the world)... It may also mean pure attribution as opposed to privation (or containing privation)." (Gödel 1995). Axioms 1, 2 and 3 can be summarized by saying that positive properties form a principal ultrafilter.

From these axioms and definitions and a few other axioms from modal logic, the following theorems can be proved:

Symbolically:


\begin{array}{rl}

\text{Ax. 1.} & \left\{P(\varphi) \wedge \Box \; \forall x[\varphi(x) \to \psi(x)]\right\} \to P(\psi) \\

\text{Ax. 2.} & P(\neg \varphi) \leftrightarrow \neg P(\varphi) \\

\text{Th. 1.} & P(\varphi) \to \Diamond \; \exists x[\varphi(x)] \\

\text{Df. 1.} & G(x) \iff \forall \varphi [P(\varphi) \to \varphi(x)] \\

\text{Ax. 3.} & P(G) \\

\text{Th. 2.} & \Diamond \; \exists x \; G(x) \\

\text{Df. 2.} & \varphi \text{ ess } x \iff \varphi(x) \wedge \forall \psi \left\{\psi(x) \to \Box \; \forall y[\varphi(y) \to \psi(y)]\right\} \\

\text{Ax. 4.} & P(\varphi) \to \Box \; P(\varphi) \\

\text{Th. 3.} & G(x) \to G \text{ ess } x \\
		
\text{Df. 3.} & E(x) \iff \forall \varphi[\varphi \text{ ess } x \to \Box \; \exists y \; \varphi(y)] \\
			
\text{Ax. 5.} & P(E) \\
			
\text{Th. 4.} & \Box \; \exists x \; G(x)
  
\end{array}

There is an ongoing open-source effort to formalize Gödel's proof to a level that is suitable for automated theorem proving or at least computer verification via proof assistants. The effort made headlines in German newspapers. According to the authors of this effort, they were inspired by Melvin Fitting's book.[9]

Criticism

Most criticism of Gödel's proof is aimed at its axioms: As with any proof in any logical system, if the axioms the proof depends on are doubted, then the conclusions can be doubted. This is particularly applicable to Gödel's proof, because it rests on five axioms that are all questionable. The proof does not say that the conclusion has to be correct, but rather that if you accept the axioms, then the conclusion is correct.

Many philosophers have questioned the axioms. The first layer of attack is simply that there are no arguments presented that give reasons why the axioms are true. A second layer is that these particular axioms lead to unwelcome conclusions. This line of thought was argued by Sobel,[10] showing that if the axioms are accepted, they lead to a modal collapse where every statement that is true is necessarily true.

There are suggested amendments to the proof, presented by C. A. Anderson presents an amended version of the proof,[11] but argued to be refutable by C. A. Anderson and Michael Gettings.[12] Sobel's proof of modal collapse has been questioned by,[13] but a counter-defence by Sobel has been given.

The proof has also been questioned by Oppy,[14] asking whether lots of other almost-gods would also be "proven" by Godel's axioms. This counter-argument has been questioned by Gettings,[15] who agrees that the axioms might be questioned, but disagrees that Oppy's particular counter-example can be shown from Godel's axioms.

There are many more criticisms, most focussing on the philosophically interesting question of whether these axioms *must* be rejected to avoid odd conclusions. The broader criticism is that even if the axioms cannot be shown to be false, that does not mean that they are true.

Ontological Proof in Literature

A humorous variant of Godel's Ontological proof is mentioned in Quentin Canterel's novel "The Jolly Coroner"

See also

Notes

  1. Quoted in Gödel 1995, p. 388. The German original is quoted in Dawson 1997, p. 307. The nested parentheses are in Morgenstern's original diary entry, as quoted by Dawson.
  2. The publication history of the proof in this paragraph is from Gödel 1995, p. 388
  3. Dawson 1997, pp. 6.
  4. Dawson 1997, pp. 210–212.
  5. Wang 1996, p. 317. The ellipsis is Wikipedia's.
  6. Wang 1996, p. 51.
  7. Gödel's answer to a special questionnaire sent him by the sociologist Burke Grandjean. This answer is quoted directly in Wang 1987, p. 18, and indirectly in Wang 1996, p. 112. It's also quoted directly in Dawson 1997, p. 6, who cites Wang 1987. The Grandjean questionnaire is perhaps the most extended autobiographical item in Gödel's papers. Gödel filled it out in pencil and wrote a cover letter, but he never returned it. "Theistic" is italicized in both Wang 1987 and Wang 1996. It is possible that this italicization is Wang's and not Gödel's. The quote follows Wang 1987, with two corrections taken from Wang 1996. Wang 1987 reads "Baptist Lutheran" where Wang 1996 has "baptized Lutheran". "Baptist Lutheran" makes no sense, especially in context, and was presumably a typo or mistranscription. Wang 1987 has "rel. cong.", which in Wang 1996 is expanded to "religious congregation".
  8. Fitting, 2002, p. 139
  9. Knight, David (23 October 2013). "Scientists Use Computer to Mathematically Prove Gödel's God Theorem". Der Spiegel. Retrieved 28 October 2013.
  10. J. H. Sobel. Gόdel's ontological proof. In J. J. Thomson, editor, On Being and Saying. Essays for Richard Cartwright. The MIT Press, Cambridge, Mass. & London, England, 1987.
  11. C. A. Anderson. Some emendations of Gόdel's ontological argument. Faith and Philosophy, 7:291–303, 1990.
  12. Gόdel's Ontological Proof Revisited | C. Anthony Anderson and Michael Gettings, Gόdel's Ontological Proof Revisited
  13. Koons, Robert C. "Sobel on Gödel’s ontological proof." (2005)
  14. Oppy, Graham. "Gödelian ontological arguments." Analysis 56.4 (1996): 226–230.
  15. Gettings, Michael. "Gödel's ontological argument: a reply to Oppy." Analysis 59.264 (1999): 309–313.

References

External links

This article is issued from Wikipedia - version of the Sunday, April 10, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.