Gamma-ray astronomy

First survey of the sky at energies above 1 GeV, collected by the Fermi Gamma-ray Space Telescope in three years of observation (2009 to 2011)
The sky at energies above 100 MeV observed by the Energetic Gamma Ray Experiment Telescope (EGRET) of the Compton Gamma Ray Observatory (CGRO) satellite (19912000)
The Moon as seen by the Energetic Gamma Ray Experiment Telescope (EGRET), in gamma rays of greater than 20 MeV. These are produced by cosmic ray bombardment of its surface.[1]

Gamma-ray astronomy is the astronomical observation of gamma rays,[nb 1] the most energetic form of electromagnetic radiation, with photon energies above 100 keV. Radiation below 100 keV is classified as X-rays and is the subject of X-ray astronomy.

September 02 2011 Fermi Second catalog of Gamma Ray Sources constructed over 2 years. An all sky image showing energies greater than 1 biilion electron volts (1 GeV) ub. Brighter colors indicate gamma-ray sources.[2]

Gamma rays in the MeV range are generated in solar flares (and even in the Earth's atmosphere), but gamma rays in the GeV range do not originate in the Solar System and are important in the study of extrasolar, and especially extra-galactic astronomy. The mechanisms emitting gamma rays are diverse, mostly identical with those emitting X-rays but at higher energies, including electron-positron annihilation, the Inverse Compton Effect, and in some cases also the decay of radioactive material (gamma decay) in space[3] reflecting extreme events such as supernovae and hypernovae, and the behaviour of matter under extreme conditions, as in pulsars and blazars. The highest photon energies measured to date are in the TeV range, the record being held by the Crab Pulsar in 2004, yielding photons with as much as 80 TeV.[4] [5] [6]

Detector technology

Observation of gamma rays first became possible in the 1960s. Their observation is much more problematic than that of X-rays or of visible light, because gamma-rays are comparatively rare, even a "bright" source needing an observation time of several minutes before it is even detected, and because gamma rays are difficult to focus, resulting in a very low resolution. The most recent generation of gamma-ray telescopes (2000s) have a resolution of the order of 6 arc minutes in the GeV range (seeing the Crab Nebula as a single "pixel"), compared to 0.5 arc seconds seen in the low energy X-ray (1 keV) range by the Chandra X-ray Observatory (1999), and about 1.5 arc minutes in the high energy X-ray (100 keV) range seen by High-Energy Focusing Telescope (2005).

Very energetic gamma rays, with photon energies over ~30 GeV, can also be detected by ground based experiments. The extremely low photon fluxes at such high energies require detector effective areas that are impractically large for current space-based instruments. Fortunately, such high-energy photons produce extensive showers of secondary particles in the atmosphere that can be observed on the ground, both directly by radiation counters and optically via the Cherenkov light which the ultra-relativistic shower particles emit. The Imaging Atmospheric Cherenkov Telescope technique currently achieves the highest sensitivity.

Gamma radiation in the TeV range emanating from the Crab Nebula was first detected in 1989 by the Whipple Observatory at Mt. Hopkins, in Arizona in the USA. Modern Cherenkov telescope experiments like H.E.S.S., VERITAS, MAGIC, and CANGAROO III can detect the Crab Nebula in a few minutes. The most energetic photons (up to 16 TeV) observed from an extragalactic object originate from the blazar, Markarian 501 (Mrk 501). These measurements were done by the High-Energy-Gamma-Ray Astronomy (HEGRA) air Cherenkov telescopes.

Gamma-ray astronomy observations are still limited by non-gamma-ray backgrounds at lower energies, and, at higher energy, by the number of photons that can be detected. Larger area detectors and better background suppression are essential for progress in the field.[7] A discovery in 2012 may allow focusing gamma-ray telescopes.[8] At photon energies greater than 700 keV, the index of refraction starts to increase again.[8]

Early history

Long before experiments could detect gamma rays emitted by cosmic sources, scientists had known that the universe should be producing them. Work by Eugene Feenberg and Henry Primakoff in 1948, Sachio Hayakawa and I.B. Hutchinson in 1952, and, especially, Philip Morrison in 1958[9] had led scientists to believe that a number of different processes which were occurring in the universe would result in gamma-ray emission. These processes included cosmic ray interactions with interstellar gas, supernova explosions, and interactions of energetic electrons with magnetic fields. However, it was not until the 1960s that our ability to actually detect these emissions came to pass.[10]

Most gamma rays coming from space are absorbed by the Earth's atmosphere, so gamma-ray astronomy could not develop until it was possible to get detectors above all or most of the atmosphere using balloons and spacecraft. The first gamma-ray telescope carried into orbit, on the Explorer 11 satellite in 1961, picked up fewer than 100 cosmic gamma-ray photons. They appeared to come from all directions in the Universe, implying some sort of uniform "gamma-ray background". Such a background would be expected from the interaction of cosmic rays (very energetic charged particles in space) with interstellar gas.

The first true astrophysical gamma-ray sources were solar flares, which revealed the strong 2.223 MeV line predicted by Morrison. This line results from the formation of deuterium via the union of a neutron and proton; in a solar flare the neutrons appear as secondaries from interactions of high-energy ions accelerated in the flare process. These first gamma-ray line observations were from OSO-3, OSO-7, and the Solar Maximum Mission, the latter spacecraft launched in 1980. The solar observations inspired theoretical work by Reuven Ramaty and others.[11]

Significant gamma-ray emission from our galaxy was first detected in 1967[12] by the detector aboard the OSO-3 satellite. It detected 621 events attributable to cosmic gamma rays. However, the field of gamma-ray astronomy took great leaps forward with the SAS-2 (1972) and the COS-B (1975–1982) satellites. These two satellites provided an exciting view into the high-energy universe (sometimes called the 'violent' universe, because the kinds of events in space that produce gamma rays tend to be high-speed collisions and similar processes). They confirmed the earlier findings of the gamma-ray background, produced the first detailed map of the sky at gamma-ray wavelengths, and detected a number of point sources. However the resolution of the instruments was insufficient to identify most of these point sources with specific visible stars or stellar systems.

A discovery in gamma-ray astronomy came in the late 1960s and early 1970s from a constellation of military defense satellites. Detectors on board the Vela satellite series, designed to detect flashes of gamma rays from nuclear bomb blasts, began to record bursts of gamma rays from deep space rather than the vicinity of the Earth. Later detectors determined that these gamma-ray bursts are seen to last for fractions of a second to minutes, appearing suddenly from unexpected directions, flickering, and then fading after briefly dominating the gamma-ray sky. Studied since the mid-1980s with instruments on board a variety of satellites and space probes, including Soviet Venera spacecraft and the Pioneer Venus Orbiter, the sources of these enigmatic high-energy flashes remain a mystery. They appear to come from far away in the Universe, and currently the most likely theory seems to be that at least some of them come from so-called hypernova explosionssupernovas creating black holes rather than neutron stars.

Nuclear gamma rays were observed from the solar flares of August 4 and 7, 1972, and November 22, 1977.[13] A solar flare is an explosion in a solar atmosphere and was originally detected visually in our own sun. Solar flares create massive amounts of radiation across the full electromagnetic spectrum from the longest wavelength, radio waves, to high energy gamma rays. The correlations of the high energy electrons energized during the flare and the gamma rays are mostly caused by nuclear combinations of high energy protons and other heavier ions. These gamma rays can be observed and allow scientists to determine the major results of the energy released, which is not provided by the emissions from other wavelengths.[14]

See also Magnetar#1979 discovery detection of a soft gamma repeater.

1980s to 1990s

On June 19, 1988, from Birigüi (50° 20' W 21° 20' S) at 10:15 UTC a balloon launch occurred which carried two NaI(Tl) detectors (600 cm2 total area) to an air pressure altitude of 5.5 mb for a total observation time of 6 hr.[15] The supernova SN1987A in the Large Magellanic Cloud (LMC) was discovered on February 23, 1987, and its progenitor was a blue supergiant, (Sk -69 202), with luminosity of 2-5 x 1038 erg/s.[15] The 847 keV and 1238 keV gamma-ray lines from 56Co decay have been detected.[15]

During its High Energy Astronomy Observatory program in 1977, NASA announced plans to build a "great observatory" for gamma-ray astronomy. The Compton Gamma-Ray Observatory (CGRO) was designed to take advantage of the major advances in detector technology during the 1980s, and was launched in 1991. The satellite carried four major instruments which have greatly improved the spatial and temporal resolution of gamma-ray observations. The CGRO provided large amounts of data which are being used to improve our understanding of the high-energy processes in our Universe. CGRO was de-orbited in June 2000 as a result of the failure of one of its stabilizing gyroscopes.

BeppoSAX was launched in 1996 and deorbited in 2003. It predominantly studied X-rays, but also observed gamma-ray bursts. By identifying the first non-gamma ray counterparts to gamma-ray bursts, it opened the way for their precise position determination and optical observation of their fading remnants in distant galaxies.

The High Energy Transient Explorer 2 (HETE-2) was launched in October 2000 (on a nominally 2 year mission) and was still operational (but fading) in March 2007.

Recent observations

Further information: Pulsar and Blazar

Swift, a NASA spacecraft, was launched in 2004 and carries the BAT instrument for gamma-ray burst observations. Following BeppoSAX and HETE-2, it has observed numerous X-ray and optical counterparts to bursts, leading to distance determinations and detailed optical follow-up. These have established that most bursts originate in the explosions of massive stars (supernovas and hypernovas) in distant galaxies. It is still operational in 2015.

Currently the (other) main space-based gamma-ray observatories are the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), Fermi, and the Astrorivelatore Gamma ad Immagini Leggero (AGILE).

Two gigantic gamma-ray bubbles at the heart of the Milky Way.

In November 2010, using the Fermi Gamma-ray Space Telescope, two gigantic gamma-ray bubbles, spanning about 25,000 light-years across, were detected at the heart of our galaxy. These bubbles of high-energy radiation are suspected as erupting from a massive black hole or evidence of a burst of star formations from millions of years ago. They were discovered after scientists filtered out the "fog of background gamma-rays suffusing the sky". This discovery confirmed previous clues that a large unknown "structure" was in the center of the Milky Way.[16]

In 2011 the Fermi team released its second catalog of gamma-ray sources detected by the satellite's Large Area Telescope (LAT), which produced an inventory of 1,873 objects shining with the highest-energy form of light. 57% of the sources are Blazars. Over half of the sources are active galaxies, their central black holes created gamma-ray emissions detected by the LAT. One third of the sources have not been detected in other wavelengths.[17]

Top 10 gamma ray sources

The Fermi team created a year 2011 list of "top ten" gamma-ray sources.[2][18] The top five sources in the Milky Way Galaxy: The Crab Nebula, W44, V407 Cygni, Pulsar PSR J0101-6422, 2FGL J0359.5+5410.

The top five sources outside the Milky Way Galaxy: Centaurus A, The Andromeda Galaxy (M31), The Cigar Galaxy (M82), Blazar PKS 0537-286, 2FGL J1305.0+1152.

A previous year 2009 "top ten" list of gamma-ray sources[19] was created.

See also

Wikimedia Commons has media related to Gamma-ray astronomy.

References

Notes

  1. Astronomical literature generally hyphenates "gamma-ray" when used as an adjective, but uses "gamma ray" without a hyphen for the noun.

Citations

  1. EGRET Detection of Gamma Rays from the Moon
  2. 1 2 "NASA - Fermi's Latest Gamma-ray Census Highlights Cosmic Mysteries". www.nasa.gov. Retrieved 2015-05-31.
  3. for example, supernova SN 1987A emitted an "afterglow" of gamma-ray photons from the decay of newly made radioactive cobalt-56 ejected into space in a cloud, by the explosion. "The Electromagnetic Spectrum - Gamma-rays". NASA. Retrieved 2010-11-14.
  4. Carlino, G.; D'Ambrosio, G.; Merola, L.; Paolucci, P.; Ricciardi, G. (16 September 2008). IFAE 2007: Incontri di Fisica delle Alte Energie Italian Meeting on High Energy Physics. Springer Science & Business Media. p. 245. ISBN 978-88-470-0747-5. Retrieved 21 August 2014.
  5. Paredes, Josep M.; Reimer, Olaf; Torres, Diego F. (17 July 2007). The Multi-Messenger Approach to High-Energy Gamma-Ray Sources: Third Workshop on the Nature of Unidentified High-Energy Sources. Springer. p. 180. ISBN 978-1-4020-6118-9. Retrieved 21 August 2014.
  6. THE CRAB NEBULA AND PULSAR BETWEEN 500 GeV AND 80 TeV: OBSERVATIONS WITH THE HEGRA STEREOSCOPIC AIR CERENKOV TELESCOPES, The Astrophysical Journal, 614:897–913, 2004 October 20
  7. Krieg, Uwe (2008). Siegfried Röser, eds. Reviews in Modern Astronomy, Cosmic Matter 20. WILEY-VCH. p. 191. ISBN 978-3-527-40820-7. Retrieved 2010-11-14.
  8. 1 2 Tim Wogan - Silicon 'prism' bends gamma rays (May 2012) - PhysicsWorld.com
  9. Morrison, Philip (March 16, 1958). "On gamma-ray astronomy". Il Nuovo Cimento (1955-1965) 7 (6): 858–865. doi:10.1007/BF02745590. Retrieved 2010-11-14.
  10. "Cosmic Rays Hunted Down: Physicists Closing in on Origin of Mysterious Particles". ScienceDaily. Dec 7, 2009. Retrieved 2010-11-14.
  11. "The History of Gamma-ray Astronomy". Retrieved 2010-11-14.
  12. "Gamma ray". Science Clarified. Retrieved 2010-11-14.
  13. Ramaty R, Kozlovsky B, Lingenfelter RE; Kozlovsky; Lingenfelter (Jul 1979). "Nuclear gamma-rays from energetic particle interactions". Ap J Suppl Ser. 40: 487–526. Bibcode:1979ApJS...40..487R. doi:10.1086/190596.
  14. "Overview of Solar Flares". NASA. Retrieved 2010-11-14.
  15. 1 2 3 Figueiredo N, Villela T, Jayanthi UB, Wuensche CA, Neri JACF, Cesta RC; Villela; Jayanthi; Wuensche; Neri; Cesta (1990). "Gamma-ray observations of SN1987A". Rev Mex Astron Astrofis. 21: 459–62. Bibcode:1990RMxAA..21..459F.
  16. Meng Su, Tracy R. Slatyer, Douglas P. Finkbeiner , Giant Gamma-ray Bubbles from Fermi-LAT: AGN Activity or Bipolar Galactic Wind? (Submitted on 29 May 2010 (v1), revised 18 Oct 2010) arXiv:1005.5480v3; "Astronomers Find Giant, Previously Unseen Structure in our Galaxy". Harvard-Smithsonian Center for Astrophysics Press Release No.: 2010-22, Tuesday, November 9, 2010. Retrieved 2010-11-14.; "Why is the Milky Way Blowing Bubbles?". SKY and Telescope. Retrieved 2010-11-14.
  17. "NASA-Fermi's Latest Gamma-ray Census Highlights Cosmic Mysteries". www.nasa.gov. Retrieved 2015-05-31.
  18. "NASA's Top 10 Gamma-Ray Sources in the Universe". Retrieved 2015-05-31.
  19. "Top Ten Gamma Ray Sources from the Fermi Telescope". Retrieved 2015-05-31.

External links

This article is issued from Wikipedia - version of the Sunday, February 28, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.