Gauge covariant derivative

The gauge covariant derivative is a variation of the covariant derivative used in general relativity. If a theory has gauge transformations, it means that some physical properties of certain equations are preserved under those transformations. Likewise, the gauge covariant derivative is the ordinary derivative modified in such a way as to make it behave like a true vector operator, so that equations written using the covariant derivative preserve their physical properties under gauge transformations.

Introduction

There are many ways in which to understand the gauge covaraint derivative. The approach taken in this article is based on the historically traditional notation used in many physics textbooks.[1][2][3] Another approach is to understand the gauge covariant derivative as a kind of connection, and more specifically, an affine connection.[4][5][6] The affine connection is interesting because it does not require any concept of a metric tensor to be defined; the curvature of an affine connection can be understood as the field strength of the gauge potential. When a metric is available, then one can go in a different direction, and define a connection on a frame bundle. This path leads directly to general relativity; however, it requires a metric, which particle physics gauge theories do not have.

Rather than being generalizations of one-another, affine and metric geometry go off in different directions: the gauge group of (pseudo-)Riemannian geometry must be the orthogonal group O(s,r) in general, or the Lorentz group O(3,1) for space-time. This is because the fibers of the frame bundle must necessarily, by definition, connect the tangent and cotangent spaces of space-time.[7] By contrast, the gauge groups employed in particle physics could be (in principle) any Lie group at all (and, in practice, being only U(1), SU(2) or SU(3) in the Standard Model). Note that Lie groups do not come equipped with a metric.

A yet more complicated, yet more accurate and geometrically enlightening, approach is to understand that the gauge covariant derivative is (exactly) the same thing as the exterior covariant derivative on a section of an associated bundle for the principal fibre bundle of the gauge theory;[8] and, for the case of spinors, the associated bundle would be a spin bundle of the spin structure.[9] Although conceptually the same, this approach uses a very different set of notation, and requires a far more advanced background in multiple areas of differential geometry.

The final step in the geometrization of gauge invariance is to recognize that, in quantum theory, one needs only to compare neighboring fibres of the principal fibre bundle, and that the fibres themselves provide a superfluous extra description. This leads to the idea of modding out the gauge group to obtain the gauge groupoid as the closest description of the gauge connection in quantum field theory.[6][10]

The more mathematical approach uses an index-free notation, emphasizing the geometric and algebraic structure of the gauge theory and its relationship to Lie algebras and Riemannian manifolds; for example, treating gauge covariance as equivariance on fibres of a fibre bundle. The index notation used in physics makes it far more convenient for practical calculations, although it makes the overall geometric structure of the theory more opaque.[7] The physics approach also has a pedagogical advantage: the general structure of a gauge theory can be exposed after a minimal background in multivariate calculus, whereas the geometric approach requires a large investment of time in the general theory of differential geometry, Riemannian manifolds, Lie algebras, representations of Lie algebras and principle bundles before a general understanding can be developed. In more advanced discussions, both notations are not uncommonly intermixed.

This article attempts to hew most closely to the notation and language commonly employed in physics curriculum, touching only briefly on the more abstract connections.

Fluid dynamics

In fluid dynamics, the gauge covariant derivative of a fluid may be defined as

 \nabla_t \mathbf{v}:= \partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v}

where \mathbf{v} is a velocity vector field of a fluid.

Gauge theory

In gauge theory, which studies a particular class of fields which are of importance in quantum field theory, the minimally-coupled gauge covariant derivative is defined as

 D_\mu := \partial_\mu - i e A_\mu

where A_\mu is the electromagnetic four potential.

(Note that this is valid for a Minkowski metric signature (-, +, +, +), which is used in this article. For (+, -, -, -) the minus becomes a plus.)

Construction of the covariant derivative through Gauge covariance requirement

Consider a generic (possibly non-Abelian) Gauge transformation given by

 \phi(x) \rightarrow U(x) \phi(x) \equiv e^{i\alpha(x)} \phi(x),
 \phi^\dagger(x) \rightarrow \phi^\dagger(x) U^\dagger (x) \equiv \phi^\dagger(x) e^{-i\alpha(x)}, \qquad U^\dagger = U^{-1}.

where \alpha(x) is an element of the Lie algebra associated with the Lie group of transformations, and can be expressed in terms of the generators as \alpha(x) = \alpha^a(x) t^a.

The partial derivative \partial_\mu transforms accordingly as

 \partial_\mu \phi(x)
\rightarrow U(x) \partial_\mu \phi(x) + (\partial_\mu U) \phi(x)
\equiv e^{i\alpha(x)} \partial_\mu \phi(x) + i (\partial_\mu \alpha) e^{i\alpha(x)} \phi(x)

and a kinetic term of the form  \phi^\dagger \partial_\mu \phi is thus not invariant under this transformation.

We can introduce the covariant derivative D_\mu in this context as a generalization of the partial derivative \partial_\mu which transforms covariantly under the Gauge transformation, i.e. an object satisfying

 D_\mu \phi(x) \rightarrow D'_\mu \phi'(x) = U(x) D_\mu \phi(x),

which in operatorial form takes the form

 D'_\mu = U(x) D_\mu U^\dagger(x).

We thus compute (omitting the explicit x dependencies for brevity)

 D_\mu \phi \rightarrow D'_\mu U \phi = UD_\mu \phi + (\delta D_\mu U + [D_\mu,U])\phi,

where

 D_\mu \rightarrow D'_\mu \equiv D_\mu + \delta D_\mu,
 A_\mu \rightarrow A'_\mu = A_\mu + \delta A_\mu.

The requirement for D_\mu to transform covariantly is now translated in the condition

 (\delta D_\mu U + [D_\mu,U])\phi = 0.

To obtain an explicit expression we make the Ansatz

 D_\mu = \partial_\mu - ig A_\mu,

from which it follows that

 \delta D_\mu \equiv -ig \delta A_\mu

and

 \delta A_\mu = [U,A_\mu]U^\dagger -\frac{i}{g} [\partial_\mu,U]U^\dagger

which, using U(x) = 1 + i \alpha(x) + \mathcal{O}(\alpha^2) , takes the form

 \delta A_\mu = \frac{1}{g} ( [\partial_\mu, \alpha] - ig [A_\mu,\alpha] ) + \mathcal{O}(\alpha^2) = \frac{1}{g} [D_\mu, \alpha] + \mathcal{O}(\alpha^2)

We have thus found an object D_\mu such that

 \phi^\dagger(x) D_\mu \phi(x) \rightarrow \phi'^\dagger(x) D'_\mu \phi'(x) = \phi^\dagger(x) D_\mu \phi(x)

Quantum electrodynamics

If a gauge transformation is given by

 \psi \mapsto e^{i\Lambda} \psi

and for the gauge potential

 A_\mu \mapsto A_\mu + {1 \over e} (\partial_\mu \Lambda)

then  D_\mu transforms as

 D_\mu \mapsto \partial_\mu - i e A_\mu - i (\partial_\mu \Lambda) ,

and  D_\mu \psi transforms as

 D_\mu \psi \mapsto e^{i \Lambda} D_\mu \psi

and  \bar \psi := \psi^\dagger \gamma^0 transforms as

 \bar \psi \mapsto \bar \psi e^{-i \Lambda}

so that

 \bar \psi D_\mu \psi \mapsto \bar \psi D_\mu \psi

and  \bar \psi D_\mu \psi in the QED Lagrangian is therefore gauge invariant, and the gauge covariant derivative is thus named aptly.

On the other hand, the non-covariant derivative  \partial_\mu would not preserve the Lagrangian's gauge symmetry, since

 \bar \psi \partial_\mu \psi \mapsto \bar \psi \partial_\mu \psi + i \bar \psi (\partial_\mu \Lambda) \psi .

Quantum chromodynamics

In quantum chromodynamics, the gauge covariant derivative is[11]

 D_\mu := \partial_\mu - i g \, A_\mu^\alpha \,  \lambda_\alpha

where g is the coupling constant, A is the gluon gauge field, for eight different gluons \alpha=1 \dots 8, \psi is a four-component Dirac spinor, and where \lambda_\alpha is one of the eight Gell-Mann matrices, \alpha=1 \dots 8. The Gell-Mann matricies give a representation of the color symmetry group SU(3). For quarks, the representation is the fundamental representation, for gluons, the representation is the adjoint representation.

Standard Model

The covariant derivative in the Standard Model can be expressed in the following form:[12]

 D_\mu := \partial_\mu - i \frac{g_1}{2} \,  Y \, B_\mu - i \frac{g_2}{2} \,  \sigma_j \, W_\mu^j - i \frac{g_3}{2} \,  \lambda_\alpha \, G_\mu^\alpha

The gauge fields here belong to the fundamental representations of the electroweak Lie group U(1)\otimes SU(2) times the color symmetry Lie group SU(3).

General relativity

In general relativity, the gauge covariant derivative is defined as

 \nabla_j v^i := \partial_j v^i + \Gamma^i {}_{j k} v^k

where \Gamma^i {}_{j k} is the Christoffel symbol. More formally, this derivative can be understood as the Riemannian connection on a frame bundle. The "gauge freedom" here is the arbitrary choice of a coordinate frame at each point in space-time.

See also

References

  1. L.D. Faddeev, A.A. Slavnov, Gauge Fields: Introduction to Gauge Theory, (1980) Benjamin Cummings, ISBN 0-8053-9016-2
  2. Claude Itzykson, Jean-Bernard Zuber, Quantum Field Theory (1980) McGraw-Hill ISBN 0-07-032071-3
  3. Warren Siegel, Fields (1999) ArXiv
  4. Richard S. Palais, The Geometrization of Physics (1981) Lecture Notes, Institute of Mathematics, National Tsing Hua University
  5. M. E. Mayer, "Review: David D. Bleecker, Gauge theory and variational principles", Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 1, 83--92
  6. 1 2 Alexandre Guay, Geometrical aspects of local gauge symmetry (2004)
  7. 1 2 Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler, Gravitation, (1973) W. H. Freeman and Company
  8. David Bleecker, "Gauge Theory and Variational Principles" (1982) D. Reidel Publishing (See chapter 3)
  9. David Bleecker, op. cit. (See Chapter 6.)
  10. Meinhard E. Mayer, "Principal Bundles versus Lie Groupoids in Gauge Theory", (1990) in Differential Geometric Methods in Theoretical Physics, Volume 245 pp 793-802
  11. http://www.fuw.edu.pl/~dobaczew/maub-42w/node9.html
  12. See e.g. eq. 3.116 in C. Tully, Elementary Particle Physics in a Nutshell, 2011, Princeton University Press.
This article is issued from Wikipedia - version of the Monday, April 25, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.