Gauss–Laguerre quadrature
In numerical analysis Gauss–Laguerre quadrature is an extension of the Gaussian quadrature method for approximating the value of integrals of the following kind:
In this case
where xi is the i-th root of Laguerre polynomial Ln(x) and the weight wi is given by [1]
For more general functions
To integrate the function we apply the following transformation
where . For the last integral one then uses Gauss-Laguerre quadrature. Note, that while this approach works from an analytical perspective, it is not always numerically stable.
Generalized Gauss–Laguerre quadrature
More generally, one can also consider integrands that have a known power-law singularity at x=0, for some real number , leading to integrals of the form:
This allows one to efficiently evaluate such integrals for polynomial or smooth f(x) even when α is not an integer.[2]
References
- ↑ Equation 25.4.45 in Abramowitz, M.; Stegun, I. A. Handbook of Mathematical Functions. Dover. ISBN 978-0-486-61272-0. 10th reprint with corrections.
- ↑ Rabinowitz, P.; Weiss, G. (1959). "Tables of Abscissas and Weights for Numerical Evaluation of Integrals of the form ". Mathematical Tables and Other Aids to Computation 13: 285–294. doi:10.1090/S0025-5718-1959-0107992-3.
Further reading
- Salzer, H. E.; Zucker, R. (1949). "Table of zeros and weight factors of the first fifteen Laguerre polynomials". Bulletin of the American Mathematical Society 55: 1004–1012. doi:10.1090/S0002-9904-1949-09327-8.
- Concus, P.; Cassatt, D.; Jaehnig, G.; Melby, E. (1963). "Tables for the evaluation of by Gauss-Laguerre quadrature". Mathematics of Computation 17: 245–256. doi:10.1090/S0025-5718-1963-0158534-9.
- Shao, T. S.; Chen, T. C.; Frank, R. M. (1964). "Table of zeros and Gaussian Weights of certain Associated Laguerre Polynomials and the related Hermite Polynomials". Mathematics of Computation 18 (88): 598–616. doi:10.1090/S0025-5718-1964-0166397-1. JSTOR 2002946. MR 0166397.
- Ehrich, S. (2002). "On stratified extensions of Gauss-Laguerre and Gauss-Hermite quadrature formulas". Journal of Computational and Applied Mathematics 140 (1-2): 291–299. doi:10.1016/S0377-0427(01)00407-1.
External links
- Matlab routine for Gauss–Laguerre quadrature
- Generalized Gauss–Laguerre quadrature, free software in Matlab, C++, and Fortran.