GeForce 256
Release date | October 11, 1999 |
---|---|
Codename | NV10 |
Cards | |
Mid-range | GeForce 256 SDR |
High-end | GeForce 256 DDR |
Rendering support | |
Direct3D | Direct3D 7.0 |
OpenGL | OpenGL 1.3 (T&L) |
History | |
Predecessor | Pre-GeForce |
Successor | GeForce 2 Series |
The GeForce 256 is the original release in Nvidia's "GeForce" product-line. Announced on August 31, 1999 and released on October 11, 1999, the GeForce 256 improves on its predecessor (RIVA TNT2) by increasing the number of fixed pixel pipelines, offloading host geometry calculations to a hardware transform and lighting (T&L) engine, and adding hardware motion-compensation for MPEG-2 video. It offered a notably large leap in 3D gaming performance and was the first fully Direct3D 7-compliant 3D accelerator.
Architecture
GeForce 256 was marketed as "the world's first 'GPU', or Graphics Processing Unit", a term Nvidia defined at the time as "a single-chip processor with integrated transform, lighting, triangle setup/clipping, and rendering engines that is capable of processing a minimum of 10 million polygons per second."[1]
The integration of the transform and lighting hardware into the GPU itself set the GeForce 256 apart from older 3D accelerators that relied on the CPU to perform these calculations (also known as software transform and lighting). This reduction of 3D graphics solution complexity brought the cost of such hardware to a new low and made it accessible to cheap consumer graphics cards instead of being limited to the previous expensive professionally oriented niche designed for computer-aided design (CAD). NV10's T&L engine also allowed Nvidia to enter the CAD market for the first time, with a product called Quadro. The Quadro line uses the same silicon chips as the GeForce cards, but has different driver support and certifications tailored to the unique requirements of CAD applications.[2]
Features
Compared to previous high-end 3D game accelerators, such as 3dfx Voodoo3 3500 and Nvidia RIVA TNT2 Ultra, GeForce provided up to a 50% or greater improvement in frame rate in some game titles (ones specifically written to take advantage of the hardware T&L) when coupled with a very low budget CPU.[3] It also had support of the full Direct3D 7 API. The GeForce 256 was supported in games up until approximately 2006, in games such as Star Wars: Empire at War.
Without broad application support at the time, critics pointed out that the T&L technology had little real-world value. Initially, it was only somewhat beneficial in certain situations in a few OpenGL-based 3D first-person shooter titles, most notably Quake III Arena. Benchmarks using low budget CPUs like the Celeron 300A would give favourable results for the GeForce 256, but benchmarks done with faster CPUs such as the Pentium II 300 would give better results with some older graphics cards like the 3dfx Voodoo 2. 3dfx and other competing graphics card companies pointed out that a fast CPU could more than make up for the lack of a T&L unit. Software support for hardware T&L was not commonplace until several years after the release of the first Geforce. Early drivers were buggy and slow, while 3dfx cards enjoyed efficient, high speed, mature Glide API and/or MiniGL support for the majority of games. Only after the GeForce 256 was replaced by the GeForce 2, and ATI's T&L-equipped Radeon was also on the market, did hardware T&L become a widely utilized feature in games.
The GeForce 256 was also quite expensive for the time and it didn't offer tangible advantages over competitors' products outside of 3D acceleration. For example, its GUI and video playback acceleration were not significantly better than that offered by competition or even older Nvidia products. Additionally, some GeForce cards were plagued with poor analog signal circuitry that caused display output to be blurry.
As CPUs became faster, the GeForce 256 demonstrated that the disadvantage of hardware T&L is that, if a CPU is fast enough, it can perform T&L functions faster than the GPU, thus making the GPU a hindrance to rendering performance. This changed the way the graphics market functioned, encouraging shorter graphics card lifetimes, and placing less emphasis on the CPU for gaming.
Motion Compensation
The Geforce 256 introduced[4] Motion Compensation as a functional unit of the geforce chip,[5][6][7] this first generation unit would be succeeded by nVidia's High-Definition Video Processor
Specifications
Discontinued support
NVIDIA has ceased driver support for GeForce 256 series.
Final Drivers Include
- Windows 9x & Windows Me: 71.84 released on March 11, 2005; Download;
- Windows 2000 & 32-bit Windows XP: 71.89 released on April 14, 2005; Download.
Competitors
See also
References
- ↑ "Graphics Processing Unit (GPU) | NVIDIA". www.nvidia.com. Retrieved 2016-03-24.
- ↑ "Nvidia Workstation Products". Nvidia.com. Retrieved 2007-10-02.
- ↑ Ross, Alex and Wood, Joan (October 14, 1999). "Nvidia GeForce 256 DDR Guide". Sharky Extreme. p. 6. Retrieved 2008-06-14.
- ↑ http://www.activewin.com/reviews/hardware/graphics/nvidia/gf4ti4600/gf3.shtml
- ↑ http://www.orpheuscomputing.com/downloads2/GeForce_HDVP_brief.pdf
- ↑ http://ccftp.creative.com/Manuals/TSD/690/English.pdf
- ↑ http://www.techspot.com/article/653-history-of-the-gpu-part-2
External links
Wikimedia Commons has media related to GeForce 256 series. |
- NVIDIA: GeForce 256 - The World's First GPU
- ForceWare 71.84 drivers, Final Windows 9x/ME driver release
- ForceWare 71.89 drivers, Final Windows XP driver release
- techPowerUp! GPU Database
|