Genetically modified insect
A genetically modified (GM) insect is an insect that has been genetically modified, either through mutagenesis, or more precise processes of transgenesis, or cisgenesis. Motivations for using GM insects include biological research purposes and genetic pest management. Genetic pest management capitalizes on recent advances in biotechnology and the growing repertoire of sequenced genomes in order to control pest populations, including insects. Insect genomes can be found in genetic databases such as NCBI,[1] and databases more specific to insects such as FlyBase,[2] VectorBase,[3] and BeetleBase.[4] There is an ongoing initiative started in 2011 to sequence the genomes of 5,000 insects and other arthropods called the i5k.[5]
Types of genetic pest management
The sterile insect technique (SIT) was developed conceptually in the 1930's and 1940's and first used in the environment in the 1950's.[6][7][8] SIT is a control strategy where male insects are sterilized, usually by irradiation, then released to mate with wild females. If enough males are released, the females will mate with mostly sterile males and lay non-viable eggs. This causes the population of insects to crash (the abundance of insects is extremely diminished), and in some cases can lead to local eradication. Irradiation is a form of mutagenesis which causes random mutations in DNA.
Release of Insects carrying Dominant Lethals (RIDL) is a control strategy using genetically engineered insects that have (carry) a lethal gene in their genome (an organism's DNA). Lethal genes cause death in an organism, and RIDl genes only kill young insects, usually larvae or pupae. Similar to how inheritance of brown eyes is dominant to blue eyes, this lethal gene is dominant so that all offspring of the RIDL insect will also inherit the lethal gene. This lethal gene has a molecular on and off switch, allowing these RIDL insects to be reared. The lethal gene is turned off when the RIDL insects are mass reared in an insectory, and turned on when they are released into the environment. RIDL males and females are released to mate with wild males and their offspring die when they reach the larval or pupal stage because of the lethal gene. This causes the population of insects to crash.This technique is being developed for some insects and for other insects has been tested in the field. It has been used in the Grand Cayman Islands, Panama, and Brazil to control the mosquito vector of dengue, Ae. aegypti.[9][10][11] It is being developed for use in diamondback moth (Plutella xylostella),[12] [13] medfly[14][15] and olive fly.[16]
Incompatible Insect Technique (IIT) - Wolbachia
Maternal Effect Dominant Embryonic Arrest (Medea)
X-Shredder
Concerns
There are concerns about using tetracycline on a routine basis for controlling the expression of lethal genes. There are plausible routes for resistance genes to develop in the bacteria within the guts of GM-insects fed on tetracycline and from there, to circulate widely in the environment. For example, antibiotic resistant genes could be spread to E.coli bacteria and into fruit by GM-Mediterranean fruit flies (Ceratitis capitata).
Releases
In January 2016 it was announced that in response to the Zika virus outbreak, Brazil’s National Biosafety Committee approved the releases of more genetically modified Aedes aegypti mosquitos throughout their country. Previously in July 2015, Oxitec released results of a test in the Juazeiro region of Brazil, of so-called “self-limiting” mosquitoes, to fight dengue, Chikungunya and Zika viruses. They concluded that mosquito populations were reduced by about 95%.[17][18]
Modified species
Biological Research
- Fruit flies (Drosophila melanogaster) are model organisms used in an array of biological disciplines (i.e. neurobiology, population genetics, ecology, animal behavior, systematics, genomics, and development).[19] [20][21] Many studies done with Drosophila spp. have been foundational in their respective fields, and they remain important models for other organisms, including humans. For example, they have contributed to understanding economically important insects and researching human disease and development.[22][23] Fruit flies are often preferred over other animals due to their short life cycle, reproduction rate, low maintenance requirements, and amenability to mutagenesis. They are also the model genetic organism for historical reasons, being one of the first model organism and have a high quality completed genome.
Genetic pest management
- Yellow fever mosquito (Aedes aegypti)
- Malaria mosquito (Anopheles gambiae and Anopheles stephensi)[24][25][26]
- Pink bollworm (Pectinophora gossypiella)
Diamondback moth
The diamondback moth's caterpillars gorge on cruciferous vegetables such as cabbage, broccoli, cauliflower and kale, globally costing farmers an estimated $5 billion (£3.2 million) a year worldwide.[27] In 2015, Oxitec developed GM-diamondback moths which produce non-viable female larvae to control populations able to develop resistance to insecticides. The GM-insects were initially placed in cages for field trials. Earlier, the moth was the first crop pest to evolve resistance to DDT[28] and eventually became resistant to 45 other insecticides.[29] In Malaysia, the moth has become immune to all synthetic sprays.[30] The gene is a combination of DNA from a virus and a bacterium. In an earlier study, captive males carrying the gene eradicated communities of non-GM moths.[28] Brood sizes were similar, but female offspring died before reproducing. The gene itself disappears after a few generations, requiring ongoing introductions of GM cultivated males. Modified moths can be identified by their red glow under ultraviolet light, caused by a coral transgene.[30]
Opponents claim that the protein made by the synthetic gene could harm non-target organisms that eat the moths. The creators claim to have tested the gene's protein on mosquitoes, fish, beetles, spiders and parasitoids without observing problems. Farmers near the test site claim that moths could endanger nearby farms' organic certification. Legal experts say that national organic standards penalize only deliberate GMO use. The creators claim that the moth does not migrate if sufficient food is available, nor can it survive winter weather.[30]
Mediterranean fruit fly
The Mediterranean fruit fly is a global agricultural pest. They infest a wide range of crops (over 300) including wild fruit, vegetables and nuts, and in the process, cause substantial damage.[31] The company Oxitec has developed GM-males which have a lethal gene that interrupts female development and kills them in a process called "pre-pupal female lethality". After several generations, the fly population diminishes as the males can no longer find mates. To breed the flies in the laboratory, the lethal gene can be "silenced" using the antibiotic tetracycline.[31]
Opponents argue that the long-term effects of releasing millions of GM-flies are impossible to predict. Dead fly larvae could be left inside crops. Helen Wallace from Genewatch, an organisation that monitors the use of genetic technology, stated "Fruit grown using Oxitec's GM flies will be contaminated with GM maggots which are genetically programmed to die inside the fruit they are supposed to be protecting". She added that the mechanism of lethality was likely to fail in the longer term as the GM flies evolve resistance or breed in sites contaminated with tetracycline which is widely used in agriculture.[31]
Legislation
In July 2015, the House of Lords (U.K.) Science and Technology Committee launched an inquiry into the possible uses of GM-insects and their associated technologies. The scope of the inquiry is to include questions such as "Would farmers benefit if insects were modified in order to reduce crop pests? What are the safety and ethical concerns over the release of genetically modified insects? How should this emerging technology be regulated?"[32]
Notes and references
- ↑ "National Center for Biotechnology Information". www.ncbi.nlm.nih.gov. Retrieved 2016-04-08.
- ↑ Group, FlyBase Web Development. "FlyBase Homepage". flybase.org. Retrieved 2016-04-08.
- ↑ "Welcome to VectorBase! | VectorBase". www.vectorbase.org. Retrieved 2016-04-08.
- ↑ "BeetleBase |". beetlebase.org. Retrieved 2016-04-08.
- ↑
- ↑ Hendrichs, J.; Franz, G.; Rendon, P. (1995-01-12). "Increased effectiveness and applicability of the sterile insect technique through male-only releases for control of Mediterranean fruit flies during fruiting seasons". Journal of Applied Entomology 119 (1-5): 371–377. doi:10.1111/j.1439-0418.1995.tb01303.x. ISSN 1439-0418.
- ↑ Klassen, W.; Curtis, C. F. (2005-01-01). Dyck, V. A.; Hendrichs, J.; Robinson, A. S., eds. History of the Sterile Insect Technique. Springer Netherlands. pp. 3–36. ISBN 9781402040504.
- ↑ Klassen, Waldemar (2004-01-01). Sterile Insect Technique. Springer Netherlands. pp. 2099–2118. ISBN 9780792386704.
- ↑ Harris, Angela F.; Nimmo, Derric; McKemey, Andrew R.; Kelly, Nick; Scaife, Sarah; Donnelly, Christl A.; Beech, Camilla; Petrie, William D.; Alphey, Luke (2011-11-01). "Field performance of engineered male mosquitoes". Nature Biotechnology 29 (11): 1034–1037. doi:10.1038/nbt.2019. ISSN 1087-0156.
- ↑ Harris, Angela F.; McKemey, Andrew R.; Nimmo, Derric; Curtis, Zoe; Black, Isaac; Morgan, Siân A.; Oviedo, Marco Neira; Lacroix, Renaud; Naish, Neil (2012-09-01). "Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes". Nature Biotechnology 30 (9): 828–830. doi:10.1038/nbt.2350. ISSN 1087-0156.
- ↑ Carvalho, Danilo O.; McKemey, Andrew R.; Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A.; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L. "Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes". PLOS Neglected Tropical Diseases 9 (7). doi:10.1371/journal.pntd.0003864. PMC 4489809. PMID 26135160.
- ↑ Harvey-Samuel, Tim; Ant, Thomas; Gong, Hongfei; Morrison, Neil I; Alphey, Luke (2014-05-01). "Population-level effects of fitness costs associated with repressible female-lethal transgene insertions in two pest insects". Evolutionary Applications 7 (5): 597–606. doi:10.1111/eva.12159. ISSN 1752-4571. PMC 4055180. PMID 24944572.
- ↑ Harvey-Samuel, Tim; Morrison, Neil I.; Walker, Adam S.; Marubbi, Thea; Yao, Ju; Collins, Hilda L.; Gorman, Kevin; Davies, T. G. Emyr; Alphey, Nina (2015-07-16). "Pest control and resistance management through release of insects carrying a male-selecting transgene". BMC Biology 13 (1). doi:10.1186/s12915-015-0161-1. PMC 4504119. PMID 26179401.
- ↑ Leftwich, Philip T.; Koukidou, Martha; Rempoulakis, Polychronis; Gong, Hong-Fei; Zacharopoulou, Antigoni; Fu, Guoliang; Chapman, Tracey; Economopoulos, Aris; Vontas, John (2014-10-07). "Genetic elimination of field-cage populations of Mediterranean fruit flies". Proceedings of the Royal Society of London B: Biological Sciences 281 (1792): 20141372. doi:10.1098/rspb.2014.1372. ISSN 0962-8452. PMC 4150327. PMID 25122230.
- ↑ Gong, Peng; Epton, Matthew J.; Fu, Guoliang; Scaife, Sarah; Hiscox, Alexandra; Condon, Kirsty C.; Condon, George C.; Morrison, Neil I.; Kelly, David W. (2005-04-01). "A dominant lethal genetic system for autocidal control of the Mediterranean fruitfly". Nature Biotechnology 23 (4): 453–456. doi:10.1038/nbt1071. ISSN 1087-0156.
- ↑ Ant, Thomas; Koukidou, Martha; Rempoulakis, Polychronis; Gong, Hong-Fei; Economopoulos, Aris; Vontas, John; Alphey, Luke (2012-06-19). "Control of the olive fruit fly using genetics-enhanced sterile insect technique". BMC Biology 10 (1). doi:10.1186/1741-7007-10-51. PMC 3398856. PMID 22713628.
- ↑ "Here’s how GM mosquitos with ‘self-destruct’ genes could save us from Zika virus". The Washington Post. 2016.
- ↑ "Press release: Oxitec mosquito works to control Aedes aegypti in dengue hotspot". Oxitec. 2015.
- ↑ Powell, Jeffrey R. (1997-01-01). Progress and Prospects in Evolutionary Biology: The Drosophila Model. Oxford University Press. ISBN 9780195076912.
- ↑ Sokolowski, Marla B. (2001-11-01). "Drosophila: Genetics meets behaviour". Nature Reviews Genetics 2 (11): 879–890. doi:10.1038/35098592. ISSN 1471-0056.
- ↑ Clyne, Peter J.; Warr, Coral G.; Freeman, Marc R.; Lessing, Derek; Kim, Junhyong; Carlson, John R. (1999-02-01). "A Novel Family of Divergent Seven-Transmembrane Proteins: Candidate Odorant Receptors in Drosophila". Neuron 22 (2): 327–338. doi:10.1016/S0896-6273(00)81093-4.
- ↑ Reiter, Lawrence T.; Potocki, Lorraine; Chien, Sam; Gribskov, Michael; Bier, Ethan (2001-06-01). "A Systematic Analysis of Human Disease-Associated Gene Sequences In Drosophila melanogaster". Genome Research 11 (6): 1114–1125. doi:10.1101/gr.169101. ISSN 1088-9051. PMC 311089. PMID 11381037.
- ↑ Chintapalli, Venkateswara R.; Wang, Jing; Dow, Julian A. T. (2007-06-01). "Using FlyAtlas to identify better Drosophila melanogaster models of human disease". Nature Genetics 39 (6): 715–720. doi:10.1038/ng2049. ISSN 1061-4036.
- ↑ Hammond, Andrew; Galizi, Roberto; Kyrou, Kyros; Simoni, Alekos; Siniscalchi, Carla; Katsanos, Dimitris; Gribble, Matthew; Baker, Dean; Marois, Eric (2015-12-07). "A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae". Nature Biotechnology. advance online publication. doi:10.1038/nbt.3439. ISSN 1546-1696.
- ↑ Roberts, Michelle (24 November 2015). "Mutant mosquitoes 'resist malaria'". BBC News Health. Retrieved 24 November 2015.
- ↑ Gantz, Valentino M.; et al. (26 October 2015). "Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi". Proceedings of the National Academy of Sciences of the United States of America: 201521077. doi:10.1073/pnas.1521077112. PMID 26598698. Retrieved 24 November 2015.
- ↑ You, Minsheng; Yue, Zhen; He, Weiyi; Yang, Xinhua; Yang, Guang; Xie, Miao; Zhan, Dongliang; Baxter, Simon W.; Vasseur, Liette (2013-02-01). "A heterozygous moth genome provides insights into herbivory and detoxification". Nature Genetics 45 (2): 220–225. doi:10.1038/ng.2524. ISSN 1061-4036. PMID 23313953. Retrieved September 2015.
- 1 2 Harvey-Samuel, Tim; Morrison, Neil I.; Walker, Adam S.; Marubbi, Thea; Yao, Ju; Collins, Hilda L.; Gorman, Kevin; Davies, T. Ge; Alphey, Nina (2015). "Pest control and resistance management through release of insects carrying a male-selecting transgene". BMC Biology 13 (1): 49. doi:10.1186/s12915-015-0161-1. ISSN 1741-7007. PMC 4504119. PMID 26179401. Retrieved September 2015.
- ↑ Miyata, Tadashi; Saito, Tetsuo; Noppun, Virapong. "Studies on the mechanism resistance to insecticides of diamondback moth" (PDF). Laboratory of Applied Entomology and Nematology, Faculty of Agriculture, Nagoya
University. Retrieved September 2015. line feed character in
|publisher=
at position 80 (help) - 1 2 3 Powell, Devin (August 31, 2015). "Replacing pesticides with genetics". New York Times. Retrieved September 2015.
- 1 2 3 Hogenboom, M. (August 14, 2015). "Genetically modified flies 'could save crops'". BBC. Retrieved September 12, 2015.
- ↑ "Genetically modified insects subject of new Lords inquiry". www.parliament.co.uk. July 20, 2015. Retrieved September 11, 2015.
See also
- Inherited sterility in insects
- List of sterile insect technique trials
- Insect ecology
- Detection of genetically modified organisms
External links
- Transgenic Fly Virtual Lab - Howard Hughes Medical Institute BioInteractive
- "GM Insects and Disease Control". Parliamentary Office of Science and Technology. Retrieved 20 November 2014.
|