Gravity darkening

Gravity darkening, also referred to as gravity brightening, is an astronomical phenomenon where a star rotates so rapidly that it has a detectably oblate spheroid shape, such as in Regulus in the constellation Leo.

When a star is oblate, it has a larger radius at its equator than it does at its poles. As a result, the poles have a higher surface gravity, and thus higher temperature and brightness. Thus, the poles are "gravity brightened", and the equator "gravity darkened".[1]

The star becomes oblate (and hence gravity darkening occurs) because the centrifugal force resulting from rotation creates additional outward pressure on the star. The centrifugal force is expressed mathematically as

 F_{\text{centrifugal}} = m \Omega^2 \rho

where m is mass (in this case of a small volume element of the star), \Omega is the angular velocity, and \rho is the radial distance from the axis of rotation. In the case of a star, the value of \rho is largest at the equator and smallest at the poles. This means that equatorial regions of a star will have a greater centrifugal force when compared to the pole. The centrifugal force pushes mass away from the axis of rotation, and results in less overall pressure on the gas in the equatorial regions of the star. This will cause the gas in this region to become less dense, and cooler.

See also

References

  1. Inglis-Arkell, Esther. "The Mysterious Phenomenon of "Gravity Darkening"". io9. Archived from the original on 28 June 2015. Retrieved 28 June 2015.


This article is issued from Wikipedia - version of the Wednesday, September 23, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.