Gyroelongated pentagonal bicupola

Gyroelongated pentagonal bicupola
Type Johnson
J45 - J46 - J47
Faces 3.10 triangles
10 squares
2 pentagons
Edges 70
Vertices 30
Vertex configuration 10(3.4.5.4)
2.10(34.4)
Symmetry group D5
Dual polyhedron -
Properties convex, chiral
Net

In geometry, the gyroelongated pentagonal bicupola is one of the Johnson solids (J46). As the name suggests, it can be constructed by gyroelongating a pentagonal bicupola (J30 or J31) by inserting a decagonal antiprism between its congruent halves.

The gyroelongated pentagonal bicupola is one of five Johnson solids which are chiral, meaning that they have a "left-handed" and a "right-handed" form. In the illustration to the right, each square face on the bottom half of the figure is connected by a path of two triangular faces to a square face above it and to the right. In the figure of opposite chirality (the mirror image of the illustrated figure), each bottom square would be connected to a square face above it and to the left. The two chiral forms of J46 are not considered different Johnson solids.

A Johnson solid is one of 92 strictly convex polyhedra that have regular faces but are not uniform (that is, they are not Platonic solids, Archimedean solids, prisms or antiprisms). They were named by Norman Johnson, who first listed these polyhedra in 1966.[1]

External links

  1. Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics 18: 169–200, doi:10.4153/cjm-1966-021-8, MR 0185507, Zbl 0132.14603.
This article is issued from Wikipedia - version of the Friday, December 11, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.