Gyrojet

Gyrojet

The Gyrojet Family, which are two Gyrojet pistols, a carbine, and the rifle. In the top-right corner is a box of 13 mm rockets, and at the bottom is a diagram book for the guns.
Type Small arms (rocket)
Place of origin  United States
Service history
Used by See Users
Production history
Designer Robert Mainhardt
Art Biehl
Manufacturer MBAssociates
Variants See Variants
Specifications
Weight 0.88 lb (0.40 kg)
Length 10.88 inches (27.6 centimetres)
Barrel length 5 inches (13 centimetres)

Cartridge Mark I- 13 mm rocket
Mark II- 12 mm rocket
Caliber Mark I- .51 caliber
Mark II- .49 caliber
Action Blow-Forward
Rate of fire 60 RPM
Select Fire (Assault Rifle variant)
Muzzle velocity very low, but increasing over trajectory to about 1250fps
Effective firing range 55 yards (50 m)
Feed system 6-round internal box magazine (Main Variants)
Sights Iron sights

The Gyrojet is a family of unique firearms developed in the 1960s named for the method of gyroscopically stabilizing its projectiles. Rather than inert bullets, Gyrojets fire small rockets called Microjets which have little recoil and do not require a heavy barrel to resist the pressure of the combustion gases. Velocity on leaving the tube was very low, but increased to around 1,250 feet per second (380 m/s) at 30 feet (9.1 m). The result is a very lightweight weapon.[1]

Long out of production, today they are a coveted collector's item with prices for even the most common model ranging above $1,000. They are, however, rarely fired; ammunition, when available at all, can cost over $100 per round.[2]

History

Robert Mainhardt and Art Biehl joined forces to form MBAssociates, or MBA, in order to develop Biehl's armor-piercing rocket rounds. Originally developed in a .51 caliber, the cartridges were self-contained self-propelled rockets with calibers ranging from .49 and 6mm to 20mm.

A family of Gyrojet weapons was designed, including the pistol, the carbine and a rifle, as well as a proposed squad-level light machine gun and the Lancejet; [3] however only the pistol and carbine were built. The space age-looking carbines and an assault rifle variant with a removable grip-inserted magazine were tested by the US Army, where they proved to have problems. One issue was that the vent ports allowed humid air into fuel, where it made the combustion considerably less reliable. The ports themselves could also become fouled fairly easily, although it was suggested that this could be solved by sealing the magazines or ports.

Versions of the Gyrojet that were tested were inaccurate, cumbersome, slow loading, and unreliable (at best, a 1% failure rate was suggested; users quote worse figures, with many rounds that misfired the first time but later fired). Possibly these disadvantages could have been overcome in time, but the technology did not offer enough advantages over conventional small arms to survive.

The original designer Robert Mainhardt enlisted the help of his friend Nick Minchakievich of Pleasanton, California, before 1962, in helping to stabilize the projectiles or ammunition. Minchakievich first developed retractable fins after rear ignition proved too dangerous. But the retractable fins proved too expensive, requiring advanced machining during production. The two experimental calibers with retractable fins were 6mm and 13mm. (Livermore Labs, p. 42.) Rushed for a solution due to the possibility of large government contracts, Minchakievich then quickly and ingeniously invented diagonal vented ports to make the projectiles or ammunition spin while advancing, thus relatively stabilize the projectiles using centrifugal force. This method was used in all the Mainhardt calibers for the Gyrojet. Minchakievich warned Mainhardt that rushing the project would only make the pistol shoddy and unreliable. Working for free out of his Livermore Aerospace Plastics Lab, Minchakievich requested six more months to perfect an accurate projectile, and make the Gyrojet more famous than the Colt Peacemaker. Mainhardt and the Air Force declined as current ordnance and technology was in demand for Vietnam. Minchakievich even attempted a marketing strategy by enlisting the help of Gene Roddenberry in using the pistol on Star Trek. Although Roddenberry loved the Gyrojet, he wanted a "ray gun" and not a pistol that merely shot a rocket projectile, no matter how advanced for the twentieth century. (Paramount Pictures, Correspondence, vol. XIX, p. 1309.) MBA projectiles are still found at building sites on Sycamore Creek Way and Happy Valley Road in Pleasanton where Minchakievich lived and did some experimentation. Nick Minchakievich also developed timed lighting in 1936 and radio controlled aircraft in 1938. His father Peter Minchakievich developed retractable storm windows in 1934 with patents US73734934A and US1983299.

When spin stabilization was chosen for the Gyrojet, the compact electronics used in today's smart bullets were not available.[4] Both the cost and size of inertial navigation equipment have decreased greatly since a Gyrojet launcher was reviewed in Guns and Ammo Magazine in 1965.[5]

Design

The inherent difference between a conventional firearm and a rocket is that the projectile of a conventional firearm builds up to its maximum speed in the barrel of the firearm, then slows down over its trajectory; the rocket continues to accelerate as long as the fuel burns, then continues its flight like an un-powered bullet. A bullet has maximum kinetic energy at the muzzle; a rocket has maximum kinetic energy immediately after its fuel is expended. The burn time for a Gyrojet rocket has been reported as 1/10 of a second by a Bathroom Reader's Institute book[6] and as 0.12 seconds by "The 'DeathWind' Project."[7]

A firearm's rifled barrel must be manufactured to high precision and be capable of withstanding extremely high pressures; it is subject to significant wear in use. The Gyrojet rocket is fired through a simple straight, smooth-walled tube of no great strength.

Accuracy is increased by spinning the projectile. This is achieved for a bullet by being forced against spiral rifling grooves in the barrel. A rocket does not have enough initial energy to allow stabilization this way. Spin stabilization of the Gyrojet was provided by angling the four tiny rocket ports rather than by forcing the projectile through a rifled barrel. Combustion gases released within the barrel were vented through vent holes in it. Spin stabilization is limited in accuracy as a targeting technique by the accuracy with which one can point the launching tube and the accuracy with which the orientation of the projectile is constrained by the tube. The technique requires the shooter to have a line of sight to his target.

The rocket leaves the barrel with low energy, and accelerates until the fuel is exhausted at about 60 feet (18 metres), at which point the rocket has a velocity of about 1250 feet per second (FPS), slightly greater than Mach one, with about 50% more energy than the common .45 ACP round.[8] While test figures vary greatly, testers report that there was a sonic crack from some rounds, but only a hissing sound from others, suggesting that the maximum velocity varied from slightly below to slightly above Mach 1.

In 1965, the manufacturer of the pistol claimed 5-mil accuracy (about 17 MOA, or about 4.5 inches at 25 yards), worse than conventional pistols of the time.[9] However, in later tests accuracy was very poor; the difference seems to have been due to a manufacturing flaw in later production runs which partially blocked one of the exhaust ports, creating asymmetrical thrust that caused the projectile to corkscrew through the air.[10]

About 1,000 of the "Rocketeer" model pistols were produced; a few saw service in the Vietnam War, and were featured in the James Bond book, and movie, You Only Live Twice, the Matt Helm film Murderers' Row as well as one of The Man from U.N.C.L.E. novels The Monster Wheel Affair. At about the same general size as the Colt M1911, the Gyrojet was considerably lighter at only 22 ounces (625 g) as the structure was mostly made of Zamac, a zinc alloy. The weapon was cocked by sliding forward a lever above the trigger to pull a round into the gun; the lever sprang back when the trigger was pulled. The lever hit the bullet on the nose, driving it into the firing pin. As the round left the chamber, it pulled the lever forward again to recock it. The pistol lacked a removable magazine; rounds had to be pushed down from the open "bolt" and then held in place by quickly sliding a cover over them on the top of the gun. Reloading quickly was impossible.

Tests in 2003 claimed that the acceleration, rather than being constant, started at a high value and decreased, leading to velocities at close range which were not as low as expected, about 100fps at 1-foot instead of the calculated 20fps. The testers suggested that the (secret) manufacturing process was designed to achieve this effect.[8] However, independent analysis of those testers' own published data shows that their conclusions were incorrectly calculated. The projectile's acceleration actually started out low and continually increased over the bullet's measured flight.[11]

Variants

Gyrojet MkI

Aside from a few Gyrojets tested by the United States Military,[12][13] most Gyrojets were sold on the commercial market starting in the mid-1960s. These were Mark I Gyrojets, which launched a .51 caliber rocket, and ammunition was costly to produce and buy.

Gyrojet MkII

In 1968, the U.S. Gun Control Act of 1968 created a new legal term, the destructive device. Under the new law, any weapon firing an explosive-filled projectile over a half-inch in diameter was considered a destructive device and required paying a tax and obtaining a license. The registration process was changed several years later, but in the interim, MBA created the legal Gyrojet Mark II, firing a .49 caliber rocket.[10]

Gyrojet Assault Rifle

Assault rifle variant with M16 type ergonomics tested by the US Army.[14] This variant had full auto capability and a removable grip inserted magazine. To increase ammo capacity, it's possible this platform was chambered in the 6mm caliber.[15]

Gyrojet Carbine

Came with a rifle type stock, pistol grip and scope.

Gyrojet Derringer

External images
Image of derringer model at handguns of the world

Derringer pistol with an upper barrel chambered for the Gyrojet round.

Gyrojet Flare Launcher

The Gyrojet principle was also examined for use in survival flare guns, and a similar idea was explored for a grenade launcher. The emergency-survival flare version (A/P25S-5A) was used for many years as a standard USAF issue item in survival kits, vests, and for forward operations signaling, with flares available in white, green, blue, and red. Known as the gyrojet flare, the A/P25S-5A came with a bandolier of seven flares and had an effective altitude of over 1,500 feet (460 metres). Its rounded-nose projectile was designed to ricochet through trees and clear an over canopy of branches.

Gyrojet Lancejet

An underwater firearm variant of the Gyrojet called the Lancejet was considered for use by the United States military. It was planned and tested but not adopted; the inaccuracy of the weapon eventually removed it from consideration.[16]

Gyrojet Pepperbox pistol

An experimental twelve barrel Gyrojet pepperbox type pistol[17][18] was planned to be used, but was not, in the film version of You Only Live Twice[19]

Gyrojet Conversion gun

A prototype gun that converted from a pistol to a rifle. Had a folding wire stock and a screw on barrel. Chambered in the 13mm cartridge format.

The Studies and Observations Group (SOG) of the U.S. Military in Vietnam in 1967 saw an opportunity to try out one of SOG's new "toys," a revolutionary rocket pistol called a Gyrojet. In one test, a rocket round punched through an old truck door and into a water-filled 55-gallon drum, almost exiting its opposite side. SOG men also test-fired it through sandbag walls and even tree trunks.[20]

Users

Although the Gyrojet was not officially adopted by any government, a few privately bought examples were used during the Vietnam War.

See also

References

  1. http://biskun.com/hobby/firearm/gyrojet.html Archived April 12, 2010, at the Wayback Machine.
  2. "Svenska Vapensamlarföreningen, SVEVAP - Gyrojet". svevap.se. Retrieved 2015-09-03.
  3. "GyroJet Gallery Not For Sale". handgunsoftheworld.com. Retrieved 2015-09-03.
  4. "XM25 Rifle: Laser Guided Smart Bullets « DarkGovernment". darkgovernment.com. Retrieved 2015-09-03.
  5. "GunsandAmmo". deathwind.com. Retrieved 2015-09-03.
  6. Bathroom Reader's Institute. "Fabulous Flop: The Gyrojet". Uncle John's Endlessly Engrossing Bathroom Reader. pp. 237–240. ...each rocket burned for 1/10 of a second. That may not sound like much, but in that short time the rocket could travel a full 60 feet, gaining speed and power all the while. It was as if the gun barrel was 60 feet long instead of just a few inches.
  7. A "Gun World Magazine" article, sixth displayed page, as shown by "The 'DeathWind' Project" at http://www.deathwind.com/gunworld.htm
  8. 1 2 "Review 2". Deathwind.com. Retrieved 2009-07-20.
  9. Smith, W. H. B.; Smith, Joseph E. (1968), Book of Pistols and Revolvers, Stackpole Company, p. 762 Cite uses deprecated parameter |coauthors= (help)
  10. 1 2 Dockery, Kevin. "Future Weapons". The Berkeley Publishing Group. (2007) ISBN 978-0-425-21215-8.
  11. "Gyrojet Ballistics". Retrieved 2013-02-04.
  12. Popular Mechanics. Hearst Magazines. p. 106. ISSN 0032-4558. Retrieved 2015-09-03.
  13. "Review 1". deathwind.com. Retrieved 2015-09-03.
  14. http://img405.imageshack.us/img405/1923/gyrojet0251.jpg
  15. "Image: GyroJet_042_1.JPG, (448 × 336 px)". handgunsoftheworld.com. 2008-12-28. Retrieved 2015-09-03.
  16. "Image: GyroJet_032_1.JPG, (448 × 336 px)". handgunsoftheworld.com. 2008-12-28. Retrieved 2015-09-03.
  17. "GW7". deathwind.com. Retrieved 2015-09-03.
  18. Deadly Zip Gun for the Missile Age LIFE 27 May 1966
  19. Esquire Magazine March 1967
  20. SOG - The Secret Wars of America's Commandos in Vietnam John L. Plaster page 78

External links

This article is issued from Wikipedia - version of the Thursday, March 10, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.