Phosphoric acid

This article is about orthophosphoric acid. For other acids commonly called "phosphoric acid", see Phosphoric acids and phosphates.
Not to be confused with Phosphorous acid.
Phosphoric acid
Names
IUPAC name
Phosphoric acid; trihydroxidooxidophosphorus
Other names
Orthophosphoric acid; Trihydroxylphosphine oxide
Identifiers
7664-38-2 YesY
16271-20-8 />16271-20-8 (hemihydrate) N
ChEBI CHEBI:26078 YesY
ChEMBL ChEMBL1187 YesY
ChemSpider 979 YesY
EC Number 231-633-2
Jmol 3D model Interactive image
KEGG D05467 YesY
PubChem 1004
RTECS number TB6300000
UNII E4GA8884NN YesY
UN number 1805
Properties
H3O4P
Molar mass 97.99 g·mol−1
Appearance white solid or colourless, viscous liquid (>42 °C)
deliquescent
Odor odorless
Density 1.885 g/mL (liquid)
1.685 g/mL (85% solution)
2.030 g/mL (crystal at 25 °C)
Melting point 42.35 °C (108.23 °F; 315.50 K)
(anhydrous)
29.32 °C (84.78 °F; 302.47 K)
(hemihydrate)
Boiling point 158 °C (316 °F; 431 K)
213 °C (415 °F; 486 K)
decomposes
392.2 g/100 g (−16.3 °C)
369.4 g/100 mL (0.5 °C)
446 g/100 mL (14.95 °C)
miscible (42.3 °C)[1]
Solubility soluble in ethanol
Vapor pressure 0.03 mmHg (20°C)[2]
Acidity (pKa) pKa1 = 2.148
pKa2 = 7.198
pKa3 = 12.319
1.34203
Viscosity 2.4–9.4 cP (85% aq. soln.)
147 cP (100%)
Structure
monoclinic
Thermochemistry
158 J/mol·K[3]
-1288 kJ/mol[3]
Hazards
Safety data sheet ICSC 1008
GHS pictograms [4]
GHS signal word Corrosive
H290, H314[4]
P280, P305+351+338, P310[4]
C
R-phrases R34
S-phrases (S1/2), S26, S45
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 3: Short exposure could cause serious temporary or residual injury. E.g., chlorine gas Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
0
3
0
Flash point Non-flammable
Lethal dose or concentration (LD, LC):
1530 mg/kg (rat, oral)[5]
US health exposure limits (NIOSH):
PEL (Permissible)
TWA 1 mg/m3[2]
REL (Recommended)
TWA 1 mg/m3 ST 3 mg/m3[2]
IDLH (Immediate danger)
1000 mg/m3[2]
Related compounds
Hypophosphorous acid
Phosphorous acid
Pyrophosphoric acid
Triphosphoric acid
Perphosphoric acid
Permonophosphoric acid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Phosphoric acid (also known as orthophosphoric acid or phosphoric(V) acid) is a mineral (inorganic) acid having the chemical formula H3PO4. Orthophosphoric acid refers to phosphoric acid, which is the IUPAC name for this compound. The prefix ortho is used to distinguish the acid from related phosphoric acids, called polyphosphoric acids. Orthophosphoric acid is a non-toxic acid, which, when pure, is a solid at room temperature and pressure. The conjugate base of phosphoric acid is the dihydrogen phosphate ion, H
2
PO
4
, which in turn has a conjugate base of hydrogen phosphate, HPO2−
4
, which has a conjugate base of phosphate, PO3−
4
. Phosphates are nutritious for all forms of life.

In addition to being a chemical reagent, phosphoric acid has a wide variety of uses, including as a rust inhibitor, food additive, dental and orthop(a)edic etchant, electrolyte, flux, dispersing agent, industrial etchant, fertilizer feedstock, and component of home cleaning products. Phosphoric acids and phosphates are also important in biology.

The most common source of phosphoric acid is an 85% aqueous solution; such solutions are colourless, odourless, and non-volatile. The 85% solution is a syrupy liquid, but still pourable. As a strong acid, it is corrosive. Because of the high percentage of phosphoric acid in this reagent, at least some of the orthophosphoric acid is condensed into polyphosphoric acids. For the sake of labeling and simplicity, the 85% represents H3PO4 as if it were all orthophosphoric acid. Dilute aqueous solutions of phosphoric acid exist in the ortho- form.

Reactions

Orthophosphoric acid molecules can combine with themselves to form a variety of compounds which are also referred to as phosphoric acids, but in a more general way.

Anhydrous phosphoric acid, a white low melting solid, is obtained by dehydration of 85% phosphoric acid by heating under a vacuum.[6]

Orthophosphoric acid ionizes upon dissolving in water, mainly to give H2PO4- and protons:

H3PO4(s) + H2O(l) H3O+(aq) + H2PO4(aq)       Ka1= 7.5×10−3
H2PO4(aq) + H2O(l) H3O+(aq) + HPO42−(aq)       Ka2= 6.2×10−8
HPO42−(aq) + H2O(l) H3O+(aq) +  PO43−(aq)        Ka3= 2.2×10−13

The anion after the first dissociation, H2PO4, is the dihydrogen phosphate anion. The anion after the second dissociation, HPO42−, is the hydrogen phosphate anion. The anion after the third dissociation, PO43−, is the phosphate or orthophosphate anion. For each of the dissociation reactions shown above, there is a separate acid dissociation constant, called Ka1, Ka2, and Ka3 given at 25 °C. Associated with these three dissociation constants are corresponding pKa1=2.12, pKa2=7.21, and pKa3=12.67 values at 25 °C.[7] Even though all three hydrogen (H) atoms are equivalent on an orthophosphoric acid molecule, the successive Ka values differ since it is energetically less favorable to lose another H+ if one (or more) has already been lost and the molecule/ion is more negatively charged.

Because the triprotic dissociation of orthophosphoric acid, the fact that its conjugate bases (the phosphates mentioned above) cover a wide pH range, and, because phosphoric acid/phosphate solutions are, in general, non-toxic, mixtures of these types of phosphates are often used as buffering agents or to make buffer solutions, where the desired pH depends on the proportions of the phosphates in the mixtures. Similarly, the non-toxic, anion salts of triprotic organic citric acid are also often used to make buffers. Phosphates are found pervasively in biology, especially in the compounds derived from phosphorylated sugars, such as DNA, RNA, and adenosine triphosphate (ATP). There is a separate article on phosphate as an anion or its salts.

Upon heating orthophosphoric acid, condensation of the phosphoric units can be induced by driving off the water formed from condensation. When one molecule of water has been removed for each two molecules of phosphoric acid, the result is pyrophosphoric acid (H4P2O7). When an average of one molecule of water per phosphoric unit has been driven off, the resulting substance is a glassy solid having an empirical formula of HPO3 and is called metaphosphoric acid.[8] Metaphosphoric acid is a singly anhydrous version of orthophosphoic acid and is sometimes used as a water- or moisture-absorbing reagent. Further dehydrating is very difficult, and can be accomplished only by means of an extremely strong desiccant (and not by heating alone). It produces phosphoric anhydride (phosphorus pentoxide), which has an empirical formula P2O5, although an actual molecule has a chemical formula of P4O10. Phosphoric anhydride is a solid, which is very strongly moisture-absorbing and is used as a desiccant.

In the presence of superacids (acids stronger than H
2
SO
4
), H
3
PO
4
reacts to form poorly characterized products, perhaps corrosive, acidic salts of the hypothetical[9] tetrahydroxylphosphonium ion, which is isoelectronic with orthosilicic acid. The suspected reaction with HSbF
6
, for example, is supposed to go:

H3PO4 + {HSbF6} → [P(OH)4+] [SbF6]

Aqueous solution

For a given total acid concentration [A] = [H3PO4] + [H2PO4] + [HPO42−] + [PO43−] ([A] is the total number of moles of pure H3PO4 which have been used to prepare 1 liter of solution), the composition of an aqueous solution of phosphoric acid can be calculated using the equilibrium equations associated with the three reactions described above together with the [H+] [OH] = 10−14 relation and the electrical neutrality equation. Possible concentrations of polyphosphoric molecules and ions is neglected. The system may be reduced to a fifth degree equation for [H+] which can be solved numerically, yielding:

[A] (mol/L) pH [H3PO4]/[A] (%) [H2PO4]/[A] (%) [HPO42−]/[A] (%) [PO43−]/[A] (%)
11.0891.78.296.20×10−61.60×10−17
10−11.6276.123.96.20×10−55.55×10−16
10−22.2543.156.96.20×10−42.33×10−14
10−33.0510.689.36.20×10−31.48×10−12
10−44.011.3098.66.19×10−21.34×10−10
10−55.000.13399.30.6121.30×10−8
10−65.971.34×10−294.55.501.11×10−6
10−76.741.80×10−374.525.53.02×10−5
10−107.008.24×10−461.738.38.18×10−5

For strong acid concentrations, the solution is mainly composed of H3PO4. For [A] = 10−2, the pH is close to pKa1, giving an equimolar mixture of H3PO4 and H2PO4. For [A] below 10−3, the solution is mainly composed of H2PO4 with [HPO42−] becoming non-negligible for very dilute solutions. [PO43−] is always negligible. Since this analysis does not take into account ion activity coefficients, the pH and molarity of a real phosphoric acid solution may deviate substantially from the above values.

Preparation

Phosphoric acid is produced industrially by two general routes – the thermal process and the wet process, which includes two sub-methods. The wet process dominates in the commercial sector. The more expensive thermal process produces a purer product that is used for applications in the food industry.

Wet

Wet process phosphoric acid is prepared by adding sulfuric acid to tricalcium phosphate rock, typically found in nature as apatite. The reaction is:

Ca5(PO4)3X + 5 H2SO4 + 10 H2O → 3 H3PO4 + 5 CaSO4·2 H2O + HX
where X may include OH, F, Cl, and Br

The initial phosphoric acid solution may contain 23–33% P2O5 (32–46% H3PO4), but can be concentrated by the evaporation of water to produce commercial- or merchant-grade phosphoric acid, which contains about 54–62% P2O5 (75–85% H3PO4). Further evaporation of water yields superphosphoric acid with a P2O5 concentration above 70% (corresponding to nearly 100% H3PO4; however, pyrophosphoric and polyphosphoric acids will start to form, making the liquid highly viscous).[10][11]

Digestion of the phosphate ore using sulfuric acid yields the insoluble calcium sulfate (gypsum), which is filtered and removed as phosphogypsum. Wet-process acid can be further purified by removing fluorine to produce animal-grade phosphoric acid, or by solvent extraction and arsenic removal to produce food-grade phosphoric acid.

The nitrophosphate process is similar to the wet process except that it uses nitric acid in place of sulfuric acid. The advantage to this route is that the coproduct, calcium nitrate is also a plant fertilizer. This method is rarely employed.

Thermal

Very pure phosphoric acid is obtained by burning elemental phosphorus to produce phosphorus pentoxide, which is subsequently dissolved in dilute phosphoric acid. This route produces a very pure phosphoric acid, since most impurities present in the rock have been removed when extracting phosphorus from the rock in a furnace. The end result is food-grade, thermal phosphoric acid; however, for critical applications, additional processing to remove arsenic compounds may be needed.

Elemental phosphorus is produced by an electric furnace. At a high temperature, a mixture of phosphate ore, silica and carbonaceous material (coke, coal etc...) produces calcium silicate, phosphorus gas and carbon monoxide. The P and CO off-gases from this reaction are cooled under water to isolate solid phosphorus. Alternatively, the P and CO off-gases can be burned with air to produce phosphorus pentoxide and carbon dioxide.

Laboratory routes

A demonstrative process consists in the oxidation of red phosphorus by nitric acid.[12]

1/n Pn + 5 HNO3 → H2O + H3PO4 + 5 NO2

Uses

The dominant use of phosphoric acid is for fertilizers, consuming approximately 90% of production.[13]

Application Demand (2006) in thousands of tons Main phosphate derivatives
Soaps and detergents 1836 STPP
Food industry 309 STPP (Na5P3O10), SHMP, TSP, SAPP, SAlP (NaA, MCP, DSP (Na2HPO4), H3PO4
Water treatment 164 SHMP, STPP, TSPP, MSP (NaH2PO4), DSP
Toothpastes 68 DCP (CaHPO4), IMP, SMFP
Other applications 287 STPP (Na3P3O9), TCP, APP, DAP, zinc phosphate (Zn3(PO4)2), aluminium phosphate (AlPO4, H3PO4)

Food additive

Food-grade phosphoric acid (additive E338[14]) is used to acidify foods and beverages such as various colas and jams. It provides a tangy or sour taste. Various salts of phosphoric acid, such as monocalcium phosphate, are used as leavening agents.[13]

Rust removal

Phosphoric acid may be used to remove rust by direct application to rusted iron, steel tools, or other surfaces. The phosphoric acid changes the reddish-brown iron(III) oxide, Fe2O3 (rust) to ferric phosphate, FePO4. An empirical formula for this reaction is:

2 H3PO4 + Fe2O3 → 2 FePO4 + 3 H2O

Liquid phosphoric acid may be used for dipping, but phosphoric acid for rust removal is more often formulated as a gel. As a thick gel, it may be applied to sloping, vertical, or even overhead surfaces. Different phosphoric acid gel formulations are sold as "rust removers" or "rust killers". Multiple applications of phosphoric acid may be required to remove all rust. Rust may also be removed via phosphate conversion coating. This process can leave a black phosphate coating that provides moderate corrosion resistance (such protection is also provided by the superficially similar Parkerizing and blued electrochemical conversion coating processes).

In medicine

Phosphoric acid is used in dentistry and orthodontics as an etching solution, to clean and roughen the surfaces of teeth where dental appliances or fillings will be placed. Phosphoric acid is also an ingredient in over-the-counter anti-nausea medications that also contain high levels of sugar (glucose and fructose). This acid is also used in many teeth whiteners to eliminate plaque that may be on the teeth before application.

Other applications

Among many applications, phosphoric acid is used:

See also

References

  1. Seidell, Atherton; Linke, William F. (1952). Solubilities of Inorganic and Organic Compounds. Van Nostrand. Retrieved 2014-06-02.
  2. 1 2 3 4 "NIOSH Pocket Guide to Chemical Hazards #0506". National Institute for Occupational Safety and Health (NIOSH).
  3. 1 2 Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. p. A22. ISBN 0-618-94690-X.
  4. 1 2 3 Sigma-Aldrich Co., Phosphoric acid. Retrieved on 2014-05-09.
  5. "Phosphoric acid". Immediately Dangerous to Life and Health. National Institute for Occupational Safety and Health (NIOSH).
  6. Klement, R. (1963) "Orthophosphoric Acid" in Handbook of Preparative Inorganic Chemistry, 2nd ed., G. Brauer (ed.), Academic Press, NY. Vol. 1. p. 543.
  7. Weast, Robert C., ed. (1983). CRC Handbook of Chemistry and Physics (64th ed.). Boca Raton, Florida: CRC Press. p. D-169. ISBN 0-8493-0464-4.
  8. phosphoric acid. The Columbia Encyclopedia, Sixth Edition.
  9. Gevrey, S.; Luna, A.; Haldys, V.; Tortajada, J.; Morizur, J. P. (1998). "Experimental and theoretical studies of the gas-phase protonation of orthophosphoric acid". The Journal of Chemical Physics 108 (6): 2458. Bibcode:1998JChPh.108.2458G. doi:10.1063/1.475628.
  10. Thomas, W P and Lawton, W S "Stable ammonium polyphosphate liquid fertilizer from merchant grade phosphoric acid" U.S. Patent 4,721,519, Issue date: January 26, 1988
  11. "Super Phosphoric Acid 0-68-0 Material Safety Data Sheet" (PDF). J.R. Simplot Company. May 2009. Retrieved 4 May 2010.
  12. Arthur Sutcliffe (1930) Practical Chemistry for Advanced Students (1949 Ed.), John Murray – London.
  13. 1 2 Klaus Schrödter, Gerhard Bettermann, Thomas Staffel, Friedrich Wahl, Thomas Klein, Thomas Hofmann "Phosphoric Acid and Phosphates" in Ullmann's Encyclopedia of Industrial Chemistry 2008, Wiley-VCH, Weinheim. doi:10.1002/14356007.a19_465.pub3
  14. "Current EU approved additives and their E Numbers". Foods Standards Agency. 14 March 2012. Retrieved 22 July 2012.
  15. Toles, C.; Rimmer, S.; Hower, J. C. (1996). "Production of activated carbons from a washington lignite using phosphoric acid activation". Carbon 34 (11): 1419. doi:10.1016/S0008-6223(96)00093-0.
  16. Wet chemical etching. umd.edu
  17. Wolf, S.; R.N. Tauber (1986). Silicon processing for the VLSI era: Volume 1 – Process technology. p. 534. ISBN 0-9616721-6-1.
  18. "Ingredient dictionary: P". Cosmetic ingredient dictionary. Paula's Choice. Retrieved 16 November 2007.
  19. "STAR SAN" (PDF). Five Star Chemicals. Retrieved 17 August 2015.

External links

Wikimedia Commons has media related to phosphoric acid.
This article is issued from Wikipedia - version of the Wednesday, May 04, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.