HOSVD-based canonical form of TP functions and qLPV models

Based on the key idea of higher-order singular value decomposition [1] (HOSVD) in tensor algebra Baranyi and Yam proposed the concept of HOSVD-based canonical form of TP functions and quasi-LPV system models.[2][3] Szeidl et al.[4] proved that the TP model transformation [5] [6] is capable of numerically reconstructing this canonical form.

Related definitions (on TP functions, finite element TP functions, and TP models) can be found here. Details on the control theoretical background (i.e., the TP type polytopic Linear Parameter-Varying state-space model) can be found here.

A free MATLAB implementation of the TP model transformation can be downloaded at or at MATLAB Central .

Existence of the HOSVD based canonical form

Assume a given finite element TP function:

f(\mathbf{x})=\mathcal{S}\boxtimes_{n=1}^N \mathbf{w}_n(x_n),

where \mathbf{x}\in \Omega \subset R^N. Assume that, the weighting functions in \mathbf{w}_n(x_n) are othonormal (or we transform to) for all n=1\ldots N. Then, the execution of the HOSVD on the core tensor \mathcal{S} leads to:

\mathcal{S}=\mathcal{A}\boxtimes_{n=1}^N \mathbf{U}_n.

Then,

f(\mathbf{x})=\mathcal{S}\boxtimes_{n=1}^N \mathbf{w}_n(x_n)=\left(\mathcal{A}\boxtimes_{n=1}^N \mathbf{U}_n\right)\boxtimes_{n=1}^N\mathbf{w}_n(x_n),

that is:

f(\mathbf{x})=\mathcal{A}\boxtimes_{n=1}^N \left(\mathbf{w}_n(x_n)\mathbf{U}_n\right) = \mathcal{A}\boxtimes_{n=1}^N \mathbf{w'}_n(x_n),

where weighting functions of \mathbf{w'}_n(x_n), are orthonormed (as both the \mathbf{w}_n(x_n) and \mathbf{U}_n where orthonormed) and core tensor \mathcal{A} contains the higher order singular values.

Definition

HOSVD based canonical from of TP function
f(\mathbf{x})=\mathcal{A}\boxtimes_{n=1}^N \mathbf{w}_n(x_n),

w_{n,i_n}(x_n), i_n=1,\dots,r_n (termed as the i_n-th singular function on the n-th dimension, n=1,\dots,N) in vector \mathbf{w}_n(x_n) form an orthonormal set:

\forall n:\int_{a_{n}}^{b_{n}}\tilde{w}_{n,i}(p_{n})\tilde{w}_{n,j}(p_{n}) \, dp_n=\delta_{i,j},\quad1\leq i,j\leq I_n,

where \delta_{i,j} is the Kronecker delta function (\delta_{ij}=1, if i=j and \delta_{ij}=0, if i\neq j).

  • all-orthogonality: two sub tensors {\mathcal{A}}_{i_{n}=i} and {\mathcal{A}}_{i_{n}=j} are orthogonal for all possible values of n,i and j:\left\langle
{\mathcal{A}}_{i_{n}=i},{\mathcal{A}}_{i_{n}=j}\right\rangle
=0 when i\neq j,
  • ordering: \left\|
{\mathcal{A}}_{i_{n}=1}\right\| \geq\left\|
{\mathcal{A}}_{i_{n}=2}\right\|  \geq\ldots\geq\left\|
{\mathcal{A}}_{i_{n}=r_{n}}\right\|  >0 for all possible values of n=1,\ldots,N+2.

in dimension n.

References

  1. Lieven De Lathauwer and Bart De Moor and Joos Vandewalle (2000). "A Multilinear Singular Value Decomposition". Journal on Matrix Analysis and Applications 21 (4): 1253–1278. doi:10.1137/s0895479896305696.
  2. P. Baranyi and L. Szeidl and P. Várlaki and Y. Yam (July 3–5, 2006). Definition of the HOSVD-based canonical form of polytopic dynamic models. Budapest, Hungary. pp. 660–665.
  3. P. Baranyi, Y. Yam and P. Várlaki (2013). "Tensor Product model transformation in polytopic model-based control". Taylor&Francis, Boca Raton FL: 240. ISBN 978-1-43-981816-9.
  4. L. Szeidl and P. Várlaki (2009). "HOSVD Based Canonical Form for Polytopic Models of Dynamic Systems". Journal of Advanced Computational Intelligence and Intelligent Informatics 13 (1): 52–60.
  5. P. Baranyi (April 2004). "TP model transformation as a way to LMI based controller design". IEEE Transaction on Industrial Electronics 51 (2): 387400. doi:10.1109/tie.2003.822037.
  6. P. Baranyi and D. Tikk and Y. Yam and R. J. Patton (2003). "From Differential Equations to PDC Controller Design via Numerical Transformation". Computers in Industry, Elsevier Science 51: 281297. doi:10.1016/s0166-3615(03)00058-7.
This article is issued from Wikipedia - version of the Wednesday, September 03, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.