S-75 Dvina

"SA-2" redirects here. For the Apollo flight, see SA-2 (Apollo).
S-75 Lea / V-750
SA-2 Guideline

S-75 including V-750 missile on camouflaged launcher
Type Strategic SAM system
Place of origin Soviet Union
Service history
In service 1957–present
Used by See list of present and former operators
Wars Vietnam War, Six-Day War, Indo-Pakistani War of 1965, Indo-Pakistani War of 1971, Yom Kippur War, Cold War, Iran–Iraq War, Gulf War, War in Abkhazia (1992–93)
Production history
Designer

Raspletin KB-1 (head developer),
Grushin MKB Fakel (missile developer),

Lavochkin OKB
Designed 1953–1957
Produced 1957
Number built Approx 4600 launchers produced[1]
Variants S-75 Dvina, S-75M-2 Volkhov-M, S-75 Desna, S-75M Volkhov, S-75M Volga
Specifications (V-750[2])
Weight 2,300 kg (5,100 lb)
Length 10,600 mm (420 in)
Diameter 700 mm (28 in)
Warhead Frag-HE
Warhead weight 200 kg (440 lb)
Detonation
mechanism
Command

Propellant Solid-fuel booster and a storable liquid-fuel upper stage
Operational
range
45 km (28 mi)
Flight altitude 25,000 m (82,000 ft)
Boost time 5 s boost, then 20 s sustain
Speed Mach 3.5
Guidance
system
Radio control command guidance
Accuracy 65 m
Launch
platform
Single rail, ground mounted (not mobile)

The S-75 Dvina (Russian: С-75; NATO reporting name SA-2 Guideline) is a Soviet-designed, high-altitude air defense system, built around a surface-to-air missile with command guidance. Since its first deployment in 1957 it has become the most widely deployed air defense system in history. It scored the first destruction of an enemy aircraft by a surface-to-air missile, shooting down a Taiwanese Martin RB-57D Canberra over China, on October 7, 1959, hitting it with three V-750 (1D) missiles at an altitude of 20 km (65,600 ft). This success was attributed to Chinese fighter aircraft at the time in order to keep the S-75 program secret.[3]

This system first gained international fame when an S-75 battery, using the newer, longer-range and higher-altitude V-750VN (13D) missile was deployed in the 1960 U-2 incident, when it shot down the U-2 of Francis Gary Powers overflying the Soviet Union on May 1, 1960.[4] The system was also deployed in Cuba during the Cuban Missile Crisis, when it shot down another U-2 of Rudolf Anderson overflying Cuba on October 27, 1962, almost precipitating nuclear war.[5] North Vietnamese forces used the S-75 extensively during the Vietnam War to defend Hanoi and Haiphong. It has also been locally produced in the People's Republic of China using the names HQ-1 and HQ-2.[6]

History

Development

SA-2 Guideline missile on display at the National Air and Space Museum

In the early 1950s, the United States Air Force rapidly accelerated its development of long-range jet bombers carrying nuclear weapons. The USAF program led to the deployment of Boeing B-47 Stratojet supported by aerial refueling aircraft to extend its range deep into the Soviet Union. The USAF quickly followed the B-47 with the development of the Boeing B-52 Stratofortress, which had greater range and payload than the B-47. The range, speed, and payload of these U.S. bombers posed a significant threat to the Soviet Union in the event of a war between the two countries.

Rear view showing the solid-propellant booster nozzle, as displayed in Imperial War Museum Duxford

Consequently, the Soviets initiated the development of improved air defense systems. Although the Soviet Air Defence Forces had large numbers of anti-aircraft artillery (AAA), including radar-directed batteries, the limitations of guns versus high-altitude jet bombers were obvious. Therefore, the Soviet Air Defense Forces began the development of missile systems to replace the World War II-vintage gun defenses.

In 1953, KB-2 began the development of what became the S-75 under the direction of Pyotr Grushin. This program focused on producing a missile which could bring down a large, non-maneuvering, high-altitude aircraft. As such it did not need to be highly maneuverable, merely fast and able to resist aircraft counter-measures. For such a pioneering system, development proceeded rapidly, and testing began a few years later. In 1957, the wider public first became aware of the S-75 when the missile was shown at that year's May Day parade in Moscow.

Initial deployment

Wide-scale deployment started in 1957, with various upgrades following over the next few years. The S-75 was never meant to replace the S-25 Berkut surface-to-air missile sites around Moscow, but it did replace high-altitude anti-aircraft guns, such as the 130 mm KS-30 and 100 mm KS-19. Between mid-1958 and 1964, U.S. intelligence assets located more than 600 S-75 sites in the USSR. These sites tended to cluster around population centers, industrial complexes, and government control centers. A ring of sites was also located around likely bomber routes into the Soviet heartland. By the mid-1960s, the Soviet Union had ended the deployment of the S-75 with perhaps 1,000 operational sites.

In addition to the Soviet Union, several S-75 batteries were deployed during the 1960s in East Germany to protect Soviet forces stationed in that country. Later the system was sold to most Warsaw Pact countries and was provided to China, North Korea, and eventually, North Vietnam.[6]

Employment

The S-75 in transport configuration

While the shooting down of Francis Gary Powers' U-2 in 1960 is the first publicized success for the S-75, the first aircraft actually shot down by the S-75 was a Taiwanese Martin RB-57D Canberra high-altitude reconnaissance aircraft. In this case, the aircraft was hit by a Chinese-operated S-75 site near Beijing on October 7, 1959.[3] Over the next few years, the Taiwanese ROCAF would lose a number of aircraft to the S-75: both RB-57s and various drones. On May 1, 1960, Gary Powers' U-2 was shot down while flying over the testing site near Sverdlovsk. The first missile destroyed the U-2, while a further 13 were also fired, hitting a pursuing high-altitude MiG-19. That action led to the U-2 Crisis of 1960. Additionally, Chinese S-75s downed five ROCAF-piloted U-2s based in Taiwan.[7]

During the Cuban Missile Crisis, a U-2 piloted by USAF Major Rudolf Anderson was shot down over Cuba by an S-75 in October 1962.[8]

In 1965, North Vietnam asked for some assistance against American airpower, for their own air-defense system lacked the ability to shoot down aircraft flying at high altitude. After some discussion it was agreed to supply the PAVN with the S-75. The decision was not made lightly, because it greatly increased the chances that one would fall into US hands for study. Site preparation started early in the year, and the US detected the program almost immediately on April 5, 1965.

Egyptian SA-2 System in 1985
Egyptian S-75 Dvina in the Egyptian Military war museum

On July 24, 1965, a USAF F-4C aircraft was shot down by an SA-2.[9] Three days later, the US responded with Operation Iron Hand to attack the other sites before they could become operational. Most of the S-75 were deployed around the Hanoi-Haiphong area and were off-limits to attack (as were local airfields) for political reasons.

The missile system was used widely throughout the world, especially in the Middle East, where Egypt and Syria used them to defend against the Israeli Air Force, with the air defense net accounting for the majority of the downed Israeli aircraft. The last apparent success seems to have occurred during the War in Abkhazia (1992–1993), when Georgian missiles shot down a Russian Sukhoi Su-27 fighter near Gudauta on March 19, 1993.[10]

Countermeasures and counter-countermeasures

Between 1965 and 1966, the US delivered a number of solutions to the S-75 problem. The Navy soon had the AGM-45 Shrike in service and mounted their first offensive strike on a site in October 1965. The Air Force responded by fitting B-66 bombers with powerful jammers (that blinded the early warning radars) and by developing smaller jamming pods for fighters (that denied range information to the radars). Later developments included the Wild Weasel aircraft, which were fitted with anti-radiation air-to-surface missile systems made to home in on the radar from the threat. This freed them to shoot the sites with Shrikes of their own.

The Soviets and Vietnamese, however, were able to adapt to some of these tactics. The USSR upgraded the radar several times to improve ECM (Electronic CounterMeasures) resistance. They also introduced a passive guidance mode, whereby the tracking radar could lock on the jamming signal itself and guide missiles directly towards the jamming source. This also meant the SAM site's tracking radar could be turned off, which prevented Shrikes from homing in on it. Moreover, some new tactics were developed to combat the Shrike. One of them was to point the radar to the side and then turn it off briefly. Since the Shrike was a relatively primitive anti-radiation missile, it would follow the beam away from the radar and then simply crash when it lost the signal (after the radar was turned off). SAM crews could briefly illuminate a hostile aircraft to see if the target was equipped with a Shrike. If the aircraft fired one, the Shrike could be neutralized with the side-pointing technique without sacrificing any S-75s. Another tactic was a "false launch" in which missile guidance signals were transmitted without a missile actually being launched. This could distract enemy pilots, or even occasionally cause them to drop ordnance prematurely to lighten their aircraft enough to dodge the nonexistent missile.

Despite these advances, the US was able to come up with effective ECM packages for the B-52E and later models. When the B-52s flew large-scale raids against Hanoi and Haiphong over an eleven-day period in December 1972, 266 S-75 missiles were fired,[11] resulting in the loss of 15 of the bombers and damage to numerous others. The ECM proved to be generally effective, but repetitive USAF flight tactics early in the bombing campaign had increased the vulnerability of the bombers, and the North Vietnamese missile crews adopted a practice of firing large S-75 salvos to overwhelm the planes' defensive countermeasures (see Operation Linebacker II). By the conclusion of the Linebacker II campaign, the shootdown rate of the S-75 against the B-52s was 2% (15 losses for 729 flown sorties).

Replacement systems

Soviet Air Defence Forces started to replace the S-75 with the vastly superior S-300 system in the 1980s. The S-75 remains in widespread service throughout the world, with some level of operational ability in 35 countries. Vietnam and Egypt are tied for the largest deployments at 280 missiles each, while North Korea has 270, and Poland has 240. The Chinese also deploy the HQ-2, an upgrade of the S-75, in relatively large numbers.

Description

Soviet doctrinal organization

The Soviet Union used a fairly standard organizational structure for S-75 units. Other countries that have employed the S-75 may have modified this structure. Typically, the S-75 is organized into a regimental structure with three subordinate battalions. The regimental headquarters will control the early-warning radars and coordinate battalion actions. The battalions will contain several batteries with their associated acquisition and targeting radars.

North Vietnamese S-75 site. Note the typical hexagonal pattern that made the sites easy to spot from the air. The Vietnamese later abandoned the layout for this reason.

Site layout

Each battalion will typically have six, semi-fixed, single-rail launchers for their V-750 missiles positioned approximately 60 to 100 m (200 to 330 ft) apart from each other in a hexagonal "flower" pattern, with radars and guidance systems placed in the center. It was this unique "flower" shape that led to the sites being easily recognizable in reconnaissance photos. Typically another six missiles are stored on tractor-trailers near the center of the site.

Missile

The V-750 is a two-stage missile consisting of a solid-fuel booster and a storable liquid-fuel upper stage, which burns red fuming nitric acid as the oxidizer and kerosene as the fuel. The booster fires for about 4–5 seconds and the main engine for about 22 seconds, by which time the missile is traveling at about Mach 3. The booster mounts four large, cropped-delta wing fins that have small control surfaces in their trailing edges to control roll. The upper stage has smaller cropped-deltas near the middle of the airframe, with a smaller set of control surfaces at the extreme rear and (in most models) much smaller fins on the nose.

The missiles are guided using radio control signals (sent on one of three channels) from the guidance computers at the site. The earlier S-75 models received their commands via two sets of four small antennas in front of the forward fins while the D model and later models used four much larger strip antennas running between the forward and middle fins. The guidance system at an S-75 site can handle only one target at a time, but it can direct three missiles against it. Additional missiles could be fired against the same target after one or more missiles of the first salvo had completed their run, freeing the radio channel.

The missile typically mounts a 195 kg (430 lb) fragmentation warhead, with proximity, contact, and command fusing. The warhead has a lethal radius of about 65 m (213 ft) at lower altitudes, but at higher altitudes the thinner atmosphere allows for a wider radius of up to 250 m (820 ft). The missile itself is accurate to about 75 m (246 ft), which explains why two were typically fired in a salvo. One version, the SA-2E, mounted a 295 kg (650 lb) nuclear warhead of an estimated 15 Kiloton yield or a conventional warhead of similar weight.

Typical range for the missile is about 45 km (28 mi), with a maximum altitude around 20,000 m (66,000 ft). The radar and guidance system imposed a fairly long short-range cutoff of about 500 to 1,000 m (1,600 to 3,300 ft), making them fairly safe for engagements at low level.

Missiles from SA-2 Guideline (all versions SA-75 / S-75)
Missile Factory index Description
V-750 1D Firing range 7–29 km; Firing altitude 3,000–23,000 m
V-750V 11D Firing range 7–29 km; Firing altitude 3,000–25,000 m; Weight 2,163 kg; Length 10,726 mm; Warhead weight 190 kg; Diameter 500 mm / 654 mm
V-750VK 11D Modernized missile
V-750VM 11DM Missile for firing to aircraft - jammer
V-750VM 11DU Modernized missile
V-750VM 11DА Modernized missile
V-750M 20ТD No specific information available
V-750SM - No specific information available
V-750VN 13D Firing range 7–29 km / 7–34 km; Firing altitude 3,000–25,000 m / 3,000–27,000 m; Length 10,841 mm
- 13DА Missile with new warhead weight 191 kg
V-750АK - No specific information available
V-753 13DM Missile from naval SAM system M-2 Volkhov-M (SA-N-2 Guideline)
V-755 20D Firing range 7–43 km; Firing altitude 3,000–30,000 m; Weight 2,360–2,396 kg; Length 10,778 mm; Warhead weight 196 kg
V-755 20DP Missile for firing on passive flight-line, Firing range 7–45 km active, 7–56 km passive; Firing altitude 300–30,000 m / 300–35,000 m
V-755 20DА Missile with expired guarantee period and remodeled to 20DS
V-755OV 20DO Missile for taking air samples
V-755U 20DS Missile with selective block for firing to target in low altitude (under 200 m); Firing altitude 100–30,000 m / 100–35,000 m
V-755U 20DSU Missile with selective block for firing to target in low altitude (under 200 m) and shortening time preparation missile to fire; Firing altitude 100–30,000 m / 100–35,000 m
V-755U 20DU Missile with shortening time preparation missile to fire
V-759 5Ja23 (5V23) Firing range 6–56 km / 6–60 km / 6–66 km; Firing altitude 100–30,000 m / 100–35,000 m; Weight 2,406 kg; Length 10,806 mm; Warhead weight 197–201 kg
V-760 15D Missile with nuclear warhead
V-760V 5V29 Missile with nuclear warhead
V-750IR - Missile with pulse radiofuse
V-750N - Test missile
V-750P - Experimental missile - with rotate wings
V-751 KM Experimental missile - flying laboratory
V-752 - Experimental missile - boosters at the sides
V-754 - Experimental missile - with semi-active homing head
V-757 17D Experimental Missile - with scramjet
- 18D Experimental Missile - with scramjet[12]
V-757Kr 3M10 Experimental Missile - version for 2K11 Krug (SA-4 Ganef)
V-758 (5 JaGG) 22D Experimental Missile - three-stage missile; Weight 3,200 kg; Speed 4.8 mach (1,560 m/s, 5,760 km/h)
Korshun - Target missile
RM-75MV - Target missile - for low altitude
RM-75V - Target missile - for high altitude
Sinitsa-23 5Ja23 Target missile

Radar

Fan Song radar (left) and a Low Blow to the right

The S-75 typically uses the Spoon Rest early warning radar which has a range of about 275 km (171 mi). The Spoon Rest provides early detection of incoming aircraft, which are then handed off to the acquisition Fan Song radar. These radars, having a range of about 65 km (40 mi), are used to refine the location, altitude, and speed of the hostile aircraft. The Fan Song system consists of two antennas operating on different frequencies, one providing elevation (altitude) information and the other azimuth (bearing) information. Regimental headquarters also include a Spoon Rest, as well as a Flat Face long-range C-band radar and Side Net height-finder. Information from these radars is sent from the regiment down to the battalion Spoon Rest operators to allow them to coordinate their searches. Earlier S-75 versions used a targeting radar known as Knife Rest, which was replaced in Soviet use, but can still be found in older installations.

Major variants

Upgrades to anti-aircraft missile systems typically combine improved missiles, radars, and operator consoles. Usually missile upgrades drive changes to other components to take advantage of the missile's improved performance. Therefore, when the Soviets introduced a new S-75, it was paired with an improved radar to match the missile's greater range and altitude.

V-750 missile in transit

As previously mentioned, most nations with S-75s have matched parts from different versions or third-party missile systems, or they have added locally produced components. This has created a wide variety of S-75 systems which meet local needs.

An HQ-2 on display at Minsk World in Shenzhen, China

DF-7

Operators

Map of S-75 operators in blue with former operators in red
A pair of S-75 launchers
Romanian S-75M3 "Volhov" launching a 5Ia23 missile at Capu Midia firing range.

Current operators

Former operators

Related content

References

  1. 1 2 "C- 75". Retrieved 14 November 2014.
  2. "V-75 SA-2 GUIDELINE: Specifications". GlobalSecurity.org. Retrieved 10 August 2010.
  3. 1 2 Steven J. Zaloga (2007). Red SAM: The SA-2 Guideline Anti-Aircraft Missile. Osprey Publishing. p. 8. ISBN 978-1-84603-062-8. On October 7, 1959, one of the Taiwanese RB-57Ds was struck at an altitude of 65,600ft (20km) by a salvo of three V-750 missiles
  4. Steven J. Zaloga (2007). Red SAM: The SA-2 Guideline Anti-Aircraft Missile. Osprey Publishing. p. 9. ISBN 978-1-84603-062-8.
  5. Steven J. Zaloga (2007). Red SAM: The SA-2 Guideline Anti-Aircraft Missile. Osprey Publishing. p. 11. ISBN 978-1-84603-062-8.
  6. 1 2 "V-750 SA-2 GUIDELINE - Russia / Soviet Nuclear Forces". Federation of American Scientists.
  7. Thornton D. Barnes. "U-2 Black Cat Squadron in Taiwan _ ROCAF U-2 Operations over China". Retrieved 14 November 2014.
  8. "Cuban Missile Crisis". United States Air Force. 23 October 2007. Archived from the original on 23 July 2012. Retrieved 10 August 2010.
  9. http://www.airforce-magazine.com/MagazineArchive/Pages/2010/July%202010/0710weasels.aspx
  10. 1 2 "Moscow Defense Brief". Retrieved 14 November 2014.
  11. Zaloga, Steven J. Red SAM: The SA-2 Guideline Anti-Aircraft Missile. Osprey Publishing, 2007. ISBN 978-1-84603-062-8. P. 22
  12. Wade, Mark (2008). "18D". Retrieved May 24, 2010.
  13. 1 2 "HQ-3 & HQ-4". Retrieved 2010-06-17.
  14. HQ-3
  15. "HQ-4". lt.cjdkby.net. Retrieved 14 November 2014.
  16. http://www.mashreghnews.ir/fa/news/64468
  17. http://www.mashreghnews.ir/fa/news/316229
  18. "M-7". china.com. Retrieved 14 November 2014.
  19. "DF-7 / M-7 / 8610 / CSS-8". Globalsecurity. Retrieved 2015-02-02.
  20. Binnie, Jeremy. "Ethiopia turns S-75 SAMs into self-propelled systems". IHS Jane's 360. IHS Jane's. Retrieved 4 May 2016.
  21. http://presstv.com/detail/175098.html
  22. "The Libyan SAM Network". 2010-05-11. Retrieved 2011-02-21.
  23. Kapila, Viney (2002). The Indian Air Force, a Balanced Strategic and Tactical Application. Prabhat Prakashan. ISBN 9788187100997.
  24. Zaloga, Steven (2007). Red SAM: The SA-2 Guideline Anti-Aircraft Missile. Osprey Publishing. p. 40. ISBN 9781846030628.

External links

Wikimedia Commons has media related to S-75.
Wikisource has several original texts related to: Audio recordings and transcripts with comments of actual Wild Weasel combat missions over Vietnam
This article is issued from Wikipedia - version of the Wednesday, May 04, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.