Heather Willauer

Heather Willauer

Willauer shows samples of synthetic fuel
Born 1974 (age 4142)
Residence Fairfax Station, Virginia
Citizenship United States
Fields Analytical chemistry
Institutions United States Naval Research Laboratory
Alma mater Berry College
University of Alabama
Known for Synthetic fuel from seawater

Heather D. Willauer (born 1974) is an American analytical chemist and inventor working in Washington, D.C., at the United States Naval Research Laboratory (NRL). Leading a research team, Willauer has patented a method for removing carbon dioxide (CO2) from seawater, in tandem with hydrogen (H2) removed simultaneously. Willauer is researching catalysts to enable a continuous Fischer–Tropsch process to recombine carbon monoxide (CO) and hydrogen gases into complex hydrocarbon liquids to synthesize jet fuel for Navy and Marine aviation, and fuel for the U.S. Navy's ships at sea.

The work of Willauer's team of researchers, once the technology is incorporated into the U.S. Navy's warships in the 2020s, is expected to release such ships from their reliance on vulnerable replenishment oilers to give them indefinite time on station, if they are sailing in mildly acidic seawater. Especially significant is the ability to maintain naval air operations without regular deliveries of jet fuel. A side benefit of the technology is that it will decrease harmful ocean acidification, by removing CO2 from seawater.

Education

Willauer attended Berry College in Georgia, graduating with a bachelor's degree in chemistry in 1996.[1] In mid-1999 she participated in the 11th International Conference on Partitioning in Aqueous Two-Phase Systems, held in Gulf Shores, Alabama.[2] In 2002, she earned a doctorate in analytical chemistry from the University of Alabama, writing her thesis on "Fundamentals of phase behavior and solute partitioning in ABS and applications to the paper industry," the "ABS" an abbreviation for "aqueous biphasic systems".[3] She began working with the NRL as an associate, then in 2004 she advanced to the position of research chemist.[1]

Career

Willauer started researching biphasic systems and phase transitions after graduating from Berry College. In 1998 she studied aqueous biphasic systems (ABS) for the potential of recapturing valuable dyes from textile manufacturing effluent. She investigated ions and catalysts.[4]

Willauer at the NRL

In the 2000s, Willauer began researching methods for extracting CO2 and H2 from acidified seawater (seawater having a pH value below 6), for the purpose of recombining the molecules as hydrocarbon fuels.[5] She investigated modified iron (Fe) catalysts for dividing seawater into its component molecules, and she studied zeolite (nanoporous aluminosilicate) catalysts for recombining the molecules into fuel. Previous studies had concluded that CO2 was too stable to be economically removed from seawater, but by 2010 Willauer had discovered that an iron-based catalyst provided as much as a 50% conversion rate of available CO2 from seawater.[6] In January 2011, the NRL placed a prototype seawater processor at Naval Air Station Key West in Florida, while Willauer continued lab research in Washington.[7]

In 2012, Willauer estimated that jet fuel could be synthesized from seawater in quantities up to 100,000 US gal (380,000 L) per day, at a cost of three to six U.S. dollars per gallon.[8][9] As well, the Navy is interested in using the technology to power its ships.[10] In 2014, Willauer said that the catalyst could be changed to make various fuels such as methanol and natural gas, as well as the olefins that can be used as the building blocks for jet fuel. She said that about 23,000 US gal (87,000 L) of seawater must be driven through the process to result in one gallon of jet fuel. Seawater is the optimum choice because it contains 140 times more CO2 by volume than the atmosphere, and it yields usable amounts of H2 unlike the air. The equipment for processing seawater is much smaller than that for processing air. Willauer said seawater is the "best option" for a source of synthetic jet fuel.[11][12] By April 2014, Willauer's team had not yet made fuel to the standard required by military jets,[13][14] but they were able in September 2013 to use the fuel to fly a radio-controlled model airplane powered by a common two-stroke internal combustion engine.[7] Because the process requires a large input of electrical energy, a plausible first step of implementation would be for American nuclear-powered aircraft carriers (the Nimitz-class and the Gerald R. Ford-class) to manufacture their own jet fuel.[15] The U.S. Navy is expected to deploy the technology some time in the 2020s.[11]

Publications

Papers

Patents

References

  1. 1 2 Larson, Don (June 16, 2013). "Opportunities in Nuclear – Second Annual Ohio State University Nuclear Power Forum, September 19, 2013". Energy from Thorium Foundation. Retrieved June 18, 2014.
  2. "List of Participants" (PDF). Gulf Shores, Alabama: 11th International Conference on Partitioning in Aqueous Two-Phase Systems. June 27 – July 2, 1999. Retrieved June 17, 2014.
  3. Willauer, Heather D. (2002). "Fundamentals of phase behavior and solute partitioning in ABS and applications to the paper industry". Tuscaloosa, Alabama: University of Alabama, Department of Chemistry.
  4. Jonathan G. Huddleston, Heather D. Willauer, Kathy R. Boaz, Robin D. Rogers (26 June 1998). "Separation and recovery of food coloring dyes using aqueous biphasic extraction chromatographic resins". Journal of Chromatography B: Biomedical Sciences and Applications 711 (1–2): 237–244. doi:10.1016/S0378-4347(97)00662-2.
  5. Parry, Daniel (September 24, 2012). "Fueling the Fleet, Navy Looks to the Seas". Naval Research Laboratory News.
  6. H.D. Willauer, D.R. Hardy, F. DiMascio, R.W. Dorner, and F.W. Williams (2010). "Synfuel from Seawater" (PDF). NRL Review (United States Naval Research Laboratory): 153–154.
  7. 1 2 Parry, Daniel (April 7, 2014). "Scale Model WWII Craft Takes Flight With Fuel From the Sea Concept". Naval Research Laboratory News.
  8. Heather D. Willauer, Dennis R. Hardy, Kenneth R. Schultz and Frederick W. Williams (2012). "The feasibility and current estimated capital costs of producing jet fuel at sea using carbon dioxide and hydrogen". Journal of Renewable Sustainable Energy 4 (033111). doi:10.1063/1.4719723.
  9. Szondy, David (September 26, 2012). "U.S. Navy looking at obtaining fuel from seawater". GizMag.
  10. Palmer, Roxanne (December 17, 2013). "How The Navy Might Spin Seawater Into Jet Fuel". International Business Times.
  11. 1 2 Tozer, Jessica L. (April 11, 2014). "Energy Independence: Creating Fuel from Seawater". Armed with Science. U.S. Department of Defense.
  12. Koren, Marina (December 13, 2013). "Guess What Could Fuel the Battleships of the Future?". National Journal.
  13. Tucker, Patrick (April 10, 2014). "The Navy Just Turned Seawater Into Jet Fuel". Defense One.
  14. Ernst, Douglas (April 10, 2014). "U.S. Navy to turn seawater into jet fuel". The Washington Times.
  15. Putic, George (May 21, 2014). "US Navy Lab Turns Seawater Into Fuel". VOA News.
This article is issued from Wikipedia - version of the Tuesday, March 29, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.