Helium compounds

Helium is the most unreactive element and so it is commonly believed that helium compounds do not exist. Helium's first ionization energy is the highest of any element. Helium has a complete shell of electrons, and in this form the atom does not join with anything to make covalent compounds. However very weak van der Waals forces exist between helium and other atoms. This force may exceed repulsive forces. So at extremely low temperatures helium may form van der Waals molecules.

Repulsive forces between helium and other atoms may be overcome by high pressures. Helium has been shown to form a crystalline compound with sodium under pressure. Suitable pressures to force helium into solid combinations could be found inside planets. Clathrates are also possible with helium under pressure in ice, and other small molecules such as nitrogen.

Other ways to make helium reactive, are to convert it into an ion, or to excite an electron to a higher level, allowing it to form excimers. Ionised helium, also known as He II, is a very high energy material able to extract an electron from any other atom. Excimers do not last for long, as the molecule containing the higher energy level helium atom can rapidly decay back to a repulsive ground state, where the two atoms making up the bond repel. However in some locations such as helium white dwarfs, conditions may be suitable to rapidly form excited helium atoms.

Known high pressure phases

Known van der Waals molecules

Known ions


Predicted solids

Predicted van der Waals molecules

Predicted ions

Fluoroheliate ion

Discredited or unlikely observations

References

  1. Dong, Xiao; Oganov, Artem R. (25 April 2014). "Stable Compound of Helium and Sodium at High Pressure". arXiv:1309.3827.
  2. 1 2 Onishi, Taku (19 May 2015). "A Molecular Orbital Analysis on Helium Dimer and Helium-Containing Materials". Journal of the Chinese Chemical Society: n/a–n/a. doi:10.1002/jccs.201500046.
  3. Matsui, M.; Sato, T.; Funamori, N. (2 January 2014). "Crystal structures and stabilities of cristobalite-helium phases at high pressures" (PDF). American Mineralogist 99 (1): 184–189. doi:10.2138/am.2014.4637.
  4. Matsui, M.; Sato, T.; Funamori, N. (2 January 2014). "Crystal structures and stabilities of cristobalite-helium phases at high pressures". American Mineralogist 99 (1): 184–189. doi:10.2138/am.2014.4637.
  5. Sato, Tomoko; Funamori, Nobumasa; Yagi, Takehiko (14 June 2011). "Helium penetrates into silica glass and reduces its compressibility". Nature Communications 2: 345. Bibcode:2011NatCo...2E.345S. doi:10.1038/ncomms1343. PMID 21673666.
  6. Vos, W. L.; Finger, L. W.; Hemley, R. J.; Hu, J. Z.; Mao, H. K.; Schouten, J. A. (2 July 1992). "A high-pressure van der Waals compound in solid nitrogen-helium mixtures". Nature 358 (6381): 46–48. Bibcode:1992Natur.358...46V. doi:10.1038/358046a0.
  7. Loubeyre, Paul; Jean-Louis, Michel; LeToullec, René; Charon-Gérard, Lydie (11 January 1993). "High pressure measurements of the He-Ne binary phase diagram at 296 K: Evidence for the stability of a stoichiometric NeHe2 solid". Physical Review Letters 70 (2): 178–181. doi:10.1103/PhysRevLett.70.178.
  8. Fukui, Hiroshi; Hirao, Naohisa; Ohishi, Yasuo; Baron, Alfred Q R (10 March 2010). "Compressional behavior of solid NeHe2 up to 90 GPa". Journal of Physics: Condensed Matter 22 (9): 095401. doi:10.1088/0953-8984/22/9/095401.
  9. Sans, Juan A.; Manjón, Francisco J.; Popescu, Catalin; Cuenca-Gotor, Vanesa P.; Gomis, Oscar; Muñoz, Alfonso; Rodríguez-Hernández, Plácida; Contreras-García, Julia; Pellicer-Porres, Julio; Pereira, Andre L. J.; Santamaría-Pérez, David; Segura, Alfredo (1 February 2016). "Ordered helium trapping and bonding in compressed arsenolite: Synthesis of As4O5.2He". Physical Review B 93 (5). doi:10.1103/PhysRevB.93.054102.
  10. Friedrich, Bretislav (8 April 2013). "A Fragile Union Between Li and He Atoms". Physics 6: 42. doi:10.1103/Physics.6.42.
  11. N. Brahms; T. V. Tscherbul; P. Zhang; J. K los; H. R. Sadeghpour; A. Dalgarno; J. M. Doyle; T. G. Walker (16 July 2010). "Formation of van der Waals molecules in buffer gas cooled magnetic traps". Physical Review Letters 105: 033001. doi:10.1103/PhysRevLett.105.033001. PMID 20867761.
  12. Bergeat, Astrid; Onvlee, Jolijn; Naulin, Christian; van der Avoird, Ad; Costes, Michel (24 March 2015). "Quantum dynamical resonances in low-energy CO(j = 0) + He inelastic collisions". Nature Chemistry 7 (4): 349–353. Bibcode:2015NatCh...7..349B. doi:10.1038/nchem.2204. PMID 25803474.
  13. Lammertsma, Koop; von Rague Schleyer, Paul; Schwarz, Helmut (October 1989). "Organic Dications: Gas Phase Experiments and Theory in Concert". Angewandte Chemie International Edition in English 28 (10): 1321–1341. doi:10.1002/anie.198913211.
  14. George A. Olah; Douglas A. Klumpp (2008). Superelectrophiles and their Chemistry. John Wiley. ISBN 9780470049617.
  15. 1 2 3 4 5 Tsong, T. T. (1983). "Field induced and surface catalyzed formation of novel ions : A pulsed-laser time-of-flight atom-probe study". The Journal of Chemical Physics 78 (7): 4763. Bibcode:1983JChPh..78.4763T. doi:10.1063/1.445276.
  16. Liu, J.; Tsong, T. T. (November 1988). "High Resolution Ion Kinetic Energ Analysis of Field Emitted Ions". Le Journal de Physique Colloques 49 (C6): C6–61–C6–66. doi:10.1051/jphyscol:1988611.
  17. Datz, Sheldon (22 Oct 2013). Condensed Matter: Applied Atomic Collision Physics, Vol. 4. Academic Press. p. 391. ISBN 9781483218694.
  18. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Gao, Kunqi (2015). "Theoretical investigation of HNgNH3 + ions (Ng = He, Ne, Ar, Kr, and Xe)". Journal of Chemical Physics 142 (14): 144301. Bibcode:2015JChPh.142n4301G. doi:10.1063/1.4916648. PMID 25877572.
  19. Patterson, P. L. (1968). "Evidence of the Existence of an He3 + Ion". Journal of Chemical Physics 48 (8): 3625. Bibcode:1968JChPh..48.3625P. doi:10.1063/1.1669660.
  20. Jašík, Juraj; Žabka, Ján; Roithová, Jana; Gerlich, Dieter (November 2013). "Infrared spectroscopy of trapped molecular dications below 4K". International Journal of Mass Spectrometry. 354-355: 204–210. Bibcode:2013IJMSp.354..204J. doi:10.1016/j.ijms.2013.06.007.
  21. 1 2 Campbell, E. K.; Holz, M.; Gerlich, D.; Maier, J. P. (15 July 2015). "Laboratory confirmation of C60+ as the carrier of two diffuse interstellar bands". Nature 523 (7560): 322–323. Bibcode:2015Natur.523..322C. doi:10.1038/nature14566. PMID 26178962.
  22. Liu, Hanyu; Yao, Yansun; Klug, Dennis D. (7 January 2015). "Stable structures of He and H2O at high pressure". Physical Review B 91 (1). doi:10.1103/PhysRevB.91.014102.
  23. 1 2 3 Kobayashi, Takanori; Kohno, Yuji; Takayanagi, Toshiyuki; Seki, Kanekazu; Ueda, Kazuyoshi (July 2012). "Rare gas bond property of Rg–Be2O2 and Rg–Be2O2–Rg (Rg=He, Ne, Ar, Kr and Xe) as a comparison with Rg–BeO". Computational and Theoretical Chemistry 991: 48–55. doi:10.1016/j.comptc.2012.03.020.
  24. 1 2 3 4 Zou, Wenli; Liu, Yang; Boggs, James E. (November 2009). "Theoretical study of RgMF (Rg=He, Ne; M=Cu, Ag, Au): Bonded structures of helium". Chemical Physics Letters 482 (4-6): 207–210. doi:10.1016/j.cplett.2009.10.010.
  25. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Brahms, Nathan; Tscherbul, Timur V.; Zhang, Peng; Kłos, Jacek; Forrey, Robert C.; Au, Yat Shan; Sadeghpour, H. R.; Dalgarno, A.; Doyle, John M.; Walker, Thad G. (2011). "Formation and dynamics of van der Waals molecules in buffer-gas traps". Physical Chemistry Chemical Physics 13 (42): 19125. Bibcode:2011PCCP...1319125B. doi:10.1039/C1CP21317B. PMID 21808786.
  26. Valdes, Alvaro; Prosmiti, Rita (3 December 2015). "Vibrational Calculations of Higher-Order Weakly Bound Complexes: the He3,4 I2 Cases". The Journal of Physical Chemistry A. doi:10.1021/acs.jpca.5b10398.
  27. Di Rienzi, Joseph; Drachman, Richard (February 2007). "Nonradiative formation of the positron-helium triplet bound state". Physical Review A 75 (2): 024501. Bibcode:2007PhRvA..75b4501D. doi:10.1103/PhysRevA.75.024501.
  28. Li, Tsung-Hui; Mou, Chun-Hao; Chen, Hui-Ru; Hu, Wei-Ping (June 2005). "Theoretical Prediction of Noble Gas Containing Anions FNgO-(Ng = He, Ar, and Kr)". Journal of the American Chemical Society 127 (25): 9241–9245. doi:10.1021/ja051276f. PMID 15969603.
  29. Jayasekharan, T.; Ghanty, T. K. (2008). "Theoretical prediction of HRgCO[sup +] ion (Rg=He, Ne, Ar, Kr, and Xe)". The Journal of Chemical Physics 129 (18): 184302. Bibcode:2008JChPh.129r4302J. doi:10.1063/1.3008057. PMID 19045398.
  30. Borocci, Stefano; Bronzolino, Nicoletta; Grandinetti, Felice (June 2008). "Noble gas–sulfur anions: A theoretical investigation of FNgS− (Ng=He, Ar, Kr, Xe)". Chemical Physics Letters 458 (1–3): 48–53. Bibcode:2008CPL...458...48B. doi:10.1016/j.cplett.2008.04.098.
  31. Jayasekharan, T.; Ghanty, T. K. (2012). "Theoretical investigation of rare gas hydride cations: HRgN2+ (Rg=He, Ar, Kr, and Xe)". The Journal of Chemical Physics 136 (16): 164312. Bibcode:2012JChPh.136p4312J. doi:10.1063/1.4704819. PMID 22559487.
  32. Antoniotti, Paola; Benzi, Paola; Bottizzo, Elena; Operti, Lorenza; Rabezzana, Roberto; Borocci, Stefano; Giordani, Maria; Grandinetti, Felice (August 2013). "(+OH complexes (Ng=He–Xe): An ab initio and DFT theoretical investigation". Computational and Theoretical Chemistry 1017: 117–125. doi:10.1016/j.comptc.2013.05.015.
  33. 1 2 3 4 5 6 Page, Alister J.; von Nagy-Felsobuki, Ellak I. (November 2008). "Structural and energetic trends in Group-I and II hydrohelide cations". Chemical Physics Letters 465 (1–3): 10–14. Bibcode:2008CPL...465...10P. doi:10.1016/j.cplett.2008.08.106.
  34. Wesendrup, Ralf; Pernpointner, Markus; Schwerdtfeger, Peter (November 1999). "Coulomb-stable triply charged diatomic: HeY^{3+}". Physical Review A 60 (5): R3347–R3349. Bibcode:1999PhRvA..60.3347W. doi:10.1103/PhysRevA.60.R3347.
  35. Bhattacharya, Sayak (January 2016). "Quantum dynamical studies of the He+HeH+ reaction using multi-configuration time-dependent Hartree approach". Computational and Theoretical Chemistry 1076: 81–85. doi:10.1016/j.comptc.2015.12.018. Retrieved 21 January 2016.
  36. Heller, Ralph (1941). "Theory of Some van der Waals Molecules". The Journal of Chemical Physics 9 (2): 154–163. Bibcode:1941JChPh...9..154H. doi:10.1063/1.1750868.paywalled;
  37. Manley, J. J. (7 March 1925). "Mercury Helide". Nature 115 (2888): 337–337. Bibcode:1925Natur.115..337M. doi:10.1038/115337d0.
  38. MANLEY, J. J. (20 June 1925). "Mercury Helide: a Correction". Nature 115 (2903): 947–947. Bibcode:1925Natur.115..947M. doi:10.1038/115947d0.
  39. Manley, J. J. (13 December 1924). "Mercury and Helium". Nature 114 (2876): 861–861. Bibcode:1924Natur.114Q.861M. doi:10.1038/114861b0.
  40. Manley, J. J. (1931). "The Discovery of Mercury Helide". Proceedings of the Bournemouth Natural Science Society (Bournemouth: Bournemouth Natural Science Society). XXIII: 61–63.
  41. 1 2 Waller, J. G. (7 May 1960). "New Clathrate Compounds of the Inert Gases". Nature 186 (4723): 429–431. Bibcode:1960Natur.186..429W. doi:10.1038/186429a0.
  42. E. H. Boomer (1 September 1925). "Experiments on the Chemical Activity of Helium". Proceedings of the Royal Society of London. Series A 109 (749): 198–205. Bibcode:1925RSPSA.109..198B. doi:10.1098/rspa.1925.0118.
  43. Krishna Prakashan Media (2008). Madhu Chatwal, ed. Advanced Inorganic Chemistry Vol-1. p. 834. ISBN 81-87224-03-7.
  44. Ruffini, Remo (1975). "The Physics of Gravitationally Collapsed Objects". Neutron Stars, Black Holes and Binary X-Ray Sources. Astrophysics and Space Science Library 48: 59–118. doi:10.1007/978-94-010-1767-1_5. ISBN 978-90-277-0542-6.
  45. Darpan, Pratiyogita (May 1999). Competition Science Vision.
  46. Raj, Gurdeep. Advanced Inorganic Chemistry Vol-1. ISBN 9788187224037.
  47. "Helium". Van Nostrand's Scientific Encyclopedia. 2002. doi:10.1002/0471743984.vse3860. ISBN 0471743984.
  48. 1 2 BOOMER, E. H. (3 January 1925). "Chemical Combination of Helium". Nature 115 (2879): 16–16. Bibcode:1925Natur.115Q..16B. doi:10.1038/115016a0.
This article is issued from Wikipedia - version of the Friday, May 06, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.