Herbrand structure

In First-order logic, a Herbrand structure S is a structure over a vocabulary σ, that is defined solely by the syntactical properties of σ. The idea is to take the symbols of terms as their values, e.g. the denotation of a constant symbol c is just 'c' (the symbol).

Herbrand structures play an important role in the foundations of logic programming.

Herbrand universe

Definition

Herbrand universe will serve as the universe in Herbrand structure.

(1) The Herbrand universe of a first order language Lσ, is the set of all ground terms of Lσ. If the language has no constants, then the language is extended by adding an arbitrary new constant.

(2) The Herbrand universe of a closed formular in Skolem normal form F, is the set of all terms without variables, that can be constructed using the function symbols and constants of F. If F has no constants, then F is extended by adding an arbitrary new constant.

Example


Let Lσ be a first order language with the vocabulary

then the Herbrand universe of Lσ (or σ) is {c, f(c), g(c), f(f(c)), f(g(c)), g(f(c)), g(g(c)), ...}.

Notice, that the relation symbols are not relevant for a Herbrand universe.

Herbrand structure

A Herbrand structure defines terms on top of a Herbrand universe.

Definition

Let S be a structure, with vocabulary σ, universe U, and a set of all terms T with the subset of all variable free terms T0. S is said to be a Herbrand structure iff

  1. U = T0
  2. for every n-ary f ∈ σ and t1, ..., tn ∈ TS it is f σ = f t1, ..., tn
  3. for every c ∈ σ it is cσ = c

Remarks

  1. U is the Herbrand universe of σ.
  2. A Herbrand structure that is a model of a theory T, is called the Herbrand model of T.

Examples

For a constant symbol c and a 1-ary function symbol f(.) we have the following interpretation:

Herbrand base

In addition to the universe, defined in Herbrand universe, and the term denotations, defined in Herbrand structure, the Herbrand base completes the interpretation by denoting the relation symbols.

Definition

A Herbrand base is the set of all ground atoms of whose argument terms are the Herbrand universe.

Examples

For a 2-ary relation symbol R, we get with the terms from above:

{ R(c, c), R(fc, c), R(c, fc), R(fc, fc), R(ffc, c), ...}

See also

References

This article is issued from Wikipedia - version of the Thursday, August 27, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.