Hybrid-pi model

The hybrid-pi model is a popular circuit model used for analyzing the small signal behavior of bipolar junction and field effect transistors. Sometimes it is also called Giacoletto model because it was introduced by L.J. Giacoletto in 1969.[1] The model can be quite accurate for low-frequency circuits and can easily be adapted for higher frequency circuits with the addition of appropriate inter-electrode capacitances and other parasitic elements.

BJT parameters

The hybrid-pi model is a linearized two-port network approximation to the BJT using the small-signal base-emitter voltage, \scriptstyle v_\text{be}, and collector-emitter voltage, \scriptstyle v_\text{ce}, as independent variables, and the small-signal base current, \scriptstyle i_\text{b}, and collector current, \scriptstyle i_\text{c}, as dependent variables.[2]

Figure 1: Simplified, low-frequency hybrid-pi BJT model.

A basic, low-frequency hybrid-pi model for the bipolar transistor is shown in figure 1. The various parameters are as follows.

g_\text{m} = \left.\frac{i_\text{c}}{v_\text{be}}\right\vert_{v_\text{ce} = 0} = \frac{I_\text{C}}{V_\text{T}}

is the transconductance, evaluated in a simple model,[3] where:

r_\pi = \left.\frac{v_\text{be}}{i_\text{b}}\right\vert_{v_\text{ce} = 0} = \frac{V_\text{T}}{I_\text{B}} = \frac{\beta_0}{g_\text{m}}

where:

Related terms

The output conductance, gce, is the reciprocal of the output resistance, ro:

g_\text{ce} = \frac{1}{r_\text{o}}.

The transresistance, rm, is the reciprocal of the transconductance:

r_\text{m} = \frac{1}{g_\text{m}}.

Full model

Full hybrid-pi model

The full model introduces the virtual terminal, B', so that the base spreading resistance, rbb, (the bulk resistance between the base contact and the active region of the base under the emitter) and rb'e (representing the base current required to make up for recombination of minority carriers in the base region) can be represented separately. Ce is the diffusion capacitance representing minority carrier storage in the base. The feedback components, rb'c and Cc, are introduced to represent the Early effect.[4]

MOSFET parameters

Figure 2: Simplified, low-frequency hybrid-pi MOSFET model.

A basic, low-frequency hybrid-pi model for the MOSFET is shown in figure 2. The various parameters are as follows.

g_\text{m} = \left.\frac{i_\text{d}}{v_\text{gs}}\right\vert_{v_\text{ds} = 0}

is the transconductance, evaluated in the Shichman-Hodges model in terms of the Q-point drain current, \scriptstyle I_\text{D}:[5]

g_\text{m} = \frac{2I_\text{D}}{V_{\text{GS}} - V_\text{th}},

where:

The combination:

V_\text{ov} = V_\text{GS} - V_\text{th}

is often called overdrive voltage.

r_\text{o} = \left.\frac{v_\text{ds}}{i_\text{d}}\right\vert_{v_\text{gs} = 0}

is the output resistance due to channel length modulation, calculated using the Shichman-Hodges model as

\begin{align}
  r_\text{o} &= \frac{1}{I_\text{D}}\left(\frac{1}{\lambda} + V_\text{DS}\right) \\
             &= \frac{1}{I_\text{D}}\left(V_E L + V_\text{DS}\right) \approx \frac{V_E L}{I_\text{D}}
\end{align}

using the approximation for the channel length modulation parameter, λ:[6]

 \lambda = \frac{1}{V_E L} .

Here VE is a technology-related parameter (about 4 V/μm for the 65 nm technology node[6]) and L is the length of the source-to-drain separation.

The drain conductance is the reciprocal of the output resistance:

g_\text{ds} = \frac{1}{r_\text{o}} .

See also

References and notes

  1. Giacoletto, L.J. "Diode and transistor equivalent circuits for transient operation" IEEE Journal of Solid-State Circuits, Vol 4, Issue 2, 1969
  2. R.C. Jaeger and T.N. Blalock (2004). Microelectronic Circuit Design (Second ed.). New York: McGraw-Hill. pp. Section 13.5, esp. Eqs. 13.19. ISBN 0-07-232099-0.
  3. R.C. Jaeger and T.N. Blalock. Eq. 5.45 pp. 242 and Eq. 13.25 p. 682. ISBN 0-07-232099-0.
  4. Dhaarma Raj Cheruku, Battula Tirumala Krishna, Electronic Devices And Circuits, pages 281-282, Pearson Education India, 2008 ISBN 8131700984.
  5. R.C. Jaeger and T.N. Blalock. Eq. 4.20 pp. 155 and Eq. 13.74 p. 702. ISBN 0-07-232099-0.
  6. 1 2 W. M. C. Sansen (2006). Analog Design Essentials. Dordrechtμ: Springer. p. §0124, p. 13. ISBN 0-387-25746-2.
This article is issued from Wikipedia - version of the Saturday, November 21, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.