Hypercycle (hyperbolic geometry)

A Poincaré disk showing the hypercycle HC that is determined by the line L and point P

In hyperbolic geometry, a hypercycle, hypercircle or equidistant curve is a curve whose points have the same orthogonal distance from a given straight line (its axis).

Given a straight line L and a point P not on L, one can construct a hypercycle by taking all points Q on the same side of L as P, with perpendicular distance to L equal to that of P.

The line L is called the axis, center, or base line of the hypercycle. The orthogonal segments from each point to L are called the radii. Their common length is called the distance or radius of the hypercycle.[1]

The hypercycles through a given point that share a tangent through that point converge towards a horocycle as their distances go towards infinity.

Properties similar to those of Euclidean lines

Hypercycles in hyperbolic geometry have some properties similar to those of lines in Euclidean geometry:

Properties similar to those of Euclidean circles

Hypercycles in hyperbolic geometry have some properties similar to those of circles in Euclidean geometry:

Other properties

Construction

A Poincaré disk showing the hypercycle HC that is determined by the line L and point P.

In the Poincaré disk model of the hyperbolic plane, hypercycles are represented by lines and circle arcs that intersect the boundary circle at non-right angles. The representation of the axis intersects the boundary circle in the same points, but at right angles.

In the Poincaré half-plane model of the hyperbolic plane, hypercycles are represented by lines and circle arcs that intersect the boundary line at non-right angles. The representation of the axis intersects the boundary line in the same points, but at right angles.

References

The tritetragonal tiling, in a Poincaré disk model, can be seen with edge sequences that follow hypercycles.
  1. Martin, George E. (1986). The foundations of geometry and the non-euclidean plane (1., corr. Springer ed.). New York: Springer-Verlag. p. 371. ISBN 3-540-90694-0.
This article is issued from Wikipedia - version of the Tuesday, May 03, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.