Hypergeometric function of a matrix argument
In mathematics, the hypergeometric function of a matrix argument is a generalization of the classical hypergeometric series. It is a function defined by an infinite summation which can be used to evaluate certain multivariate integrals.
Hypergeometric functions of a matrix argument have applications in random matrix theory. For example, the distributions of the extreme eigenvalues of random matrices are often expressed in terms of the hypergeometric function of a matrix argument.
Definition
Let 
 and 
 be integers, and let
 be an 
 complex symmetric matrix.
Then the hypergeometric function of a matrix argument 
and parameter 
 is defined as
where 
 means 
 is a partition of 
, 
 is the Generalized Pochhammer symbol, and 
 is the "C" normalization of the Jack function.
Two matrix arguments
If 
 and 
 are two 
 complex symmetric matrices, then the hypergeometric function of two matrix arguments is defined as:
where 
 is the identity matrix of size 
.
Not a typical function of a matrix argument
Unlike other functions of matrix argument, such as the matrix exponential, which are matrix-valued, the hypergeometric function of (one or two) matrix arguments is scalar-valued.
The parameter 
In many publications the parameter 
 is omitted. Also, in different publications different values of 
 are being implicitly assumed. For example, in the theory of real random matrices (see, e.g., Muirhead, 1984), 
 whereas in other settings (e.g., in the complex case—see Gross and Richards, 1989), 
. To make matters worse, in random matrix theory researchers tend to  prefer a parameter called 
 instead of 
 which is used in combinatorics.
The thing to remember is that
Care should be exercised as to whether a particular text is using a parameter 
 or 
 and which the particular value of that parameter is.
Typically, in settings involving real random matrices, 
 and thus 
. In settings involving complex random matrices, one has 
 and 
.
References
- K. I. Gross and D. St. P. Richards, "Total positivity, spherical series, and hypergeometric functions of matrix argument", J. Approx. Theory, 59, no. 2, 224–246, 1989.
 - J. Kaneko, "Selberg Integrals and hypergeometric functions associated with Jack polynomials", SIAM Journal on Mathematical Analysis, 24, no. 4, 1086-1110, 1993.
 - Plamen Koev and Alan Edelman, "The efficient evaluation of the hypergeometric function of a matrix argument", Mathematics of Computation, 75, no. 254, 833-846, 2006.
 - Robb Muirhead, Aspects of Multivariate Statistical Theory, John Wiley & Sons, Inc., New York, 1984.
 


