Imaginary curve

In algebraic geometry an imaginary curve is an algebraic curve which does not contain any real points.[1]

For example, the set of pairs of complex numbers (x,y) satisfying the equation x^2+y^2=-1 forms an imaginary circle, containing points such as (i,0) and (\frac{5i}{3},\frac{4}{3}) but not containing any points both of whose coordinates are real.

In some cases, more generally, an algebraic curve with only finitely many real points is considered to be an imaginary curve. For instance, an imaginary line is a line (in a complex projective space) that contains only one real point.[2]

See also

References

  1. Petrowsky, I. (1938), "On the topology of real plane algebraic curves", Annals of Mathematics, Second Series 39 (1): 189–209, doi:10.2307/1968723, MR 1503398.
  2. Patterson, B. C. (1941), "The inversive plane", The American Mathematical Monthly 48: 589–599, doi:10.2307/2303867, MR 0006034.
This article is issued from Wikipedia - version of the Friday, May 02, 2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.