Inverse system

In mathematics, an inverse system in a category C is a functor from a small cofiltered category I to C. An inverse system is sometimes called a pro-object in C. The dual concept is a direct system.

The category of inverse systems

Pro-objects in C form a category pro-C. The general definition was given by Alexander Grothendieck in 1959, in TDTE.[1]

Two inverse systems

F:I\to C

and

G:J\to C determine a functor

Iop x J \to Sets,

namely the functor

\mathrm{Hom}_C(F(i),G(j)).

The set of homomorphisms between F and G in pro-C is defined to be the colimit of this functor in the first variable, followed by the limit in the second variable.

If C has all inverse limits, then the limit defines a functor pro-C\toC. In practice, e.g. if C is a category of algebraic or topological objects, this functor is not an equivalence of categories.

Direct systems/Ind-objects

An ind-object in C is a pro-object in Cop. The category of ind-objects is written ind-C.

Examples

References

Notes

  1. C.E. Aull; R. Lowen (31 December 2001). Handbook of the History of General Topology. Springer Science & Business Media. p. 1147. ISBN 978-0-7923-6970-7.
This article is issued from Wikipedia - version of the Thursday, March 10, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.