Isotropic manifold
In mathematics, an isotropic manifold is a manifold in which the geometry does not depend on directions. Formally, we say that a Riemannian manifold is isotropic if for any point
and unit vectors
, there is an isometry
of
with
and
. Every complete isotropic manifold is homogeneous, i.e. for any
there is an isometry
of
with
This can be seen by considering a geodesic
from
to
and taking the isometry which fixes
and maps
to
Examples
The simply-connected space forms (the n-sphere, hyperbolic space, and ) are isotropic. It is not true in general that any constant curvature manifold is isotropic; for example, the flat torus
is not isotropic. This can be seen by noting that any isometry of
which fixes a point
must lift to an isometry of
which fixes a point and preserves
; thus the group of isometries of
which fix
is discrete. Moreover, it can be seen that no oriented surface with constant curvature and negative Euler characteristic is isotropic.
Moreover, there are isotropic manifolds which do not have constant curvature, such as the complex projective space (
) equipped with the Fubini-Study metric.
Further examples of isotropic manifolds are given by the rank one symmetric spaces, including the projective spaces ,
,
, and
, as well as their noncompact hyperbolic analogues.
A manifold can be homogeneous but not isotropic, such as the flat torus or
with the product metric.