Jacobi polynomials

For Jacobi polynomials of several variables, see Heckman–Opdam polynomials.

In mathematics, Jacobi polynomials (occasionally called hypergeometric polynomials) P(α, β)
n
(x)
are a class of classical orthogonal polynomials. They are orthogonal with respect to the weight (1 − x)α(1 + x)β on the interval [−1, 1]. The Gegenbauer polynomials, and thus also the Legendre, Zernike and Chebyshev polynomials, are special cases of the Jacobi polynomials.[1]

The Jacobi polynomials were introduced by Carl Gustav Jacob Jacobi.

Definitions

Via the hypergeometric function

The Jacobi polynomials are defined via the hypergeometric function as follows:[2]

P_n^{(\alpha,\beta)}(z)=\frac{(\alpha+1)_n}{n!}\,{}_2F_1\left(-n,1+\alpha+\beta+n;\alpha+1;\tfrac{1}{2}(1-z)\right),

where (\alpha+1)_n is Pochhammer's symbol (for the rising factorial). In this case, the series for the hypergeometric function is finite, therefore one obtains the following equivalent expression:

P_n^{(\alpha,\beta)} (z) = \frac{\Gamma (\alpha+n+1)}{n!\,\Gamma (\alpha+\beta+n+1)} \sum_{m=0}^n {n\choose m} \frac{\Gamma (\alpha + \beta + n + m + 1)}{\Gamma (\alpha + m + 1)} \left(\frac{z-1}{2}\right)^m.

Rodrigues' formula

An equivalent definition is given by Rodrigues' formula:[1][3]

P_n^{(\alpha,\beta)}(z) = \frac{(-1)^n}{2^n n!} (1-z)^{-\alpha} (1+z)^{-\beta} \frac{d^n}{dz^n} \left\{ (1-z)^\alpha (1+z)^\beta \left (1 - z^2 \right )^n \right\}.

If  \alpha = \beta = 0 , then it reduces to the Legendre polynomials:

 P_{n} = \frac{1 }{2^n  n! } \frac{d^n }{ d z^n }  ( z^2 - 1 )^n  \; .

Alternate expression for real argument

For real x the Jacobi polynomial can alternatively be written as

P_n^{(\alpha,\beta)}(x)= \sum_{s=0}^n {n+\alpha\choose s}{n+\beta \choose n-s} \left(\frac{x-1}{2}\right)^{n-s} \left(\frac{x+1}{2}\right)^{s}.

and for integer n

{z \choose n} = \begin{cases} \frac{\Gamma(z+1)}{\Gamma(n+1)\Gamma(z-n+1)} & n \geq 0 \\ 0 & n < 0 \end{cases}

where Γ(z) is the Gamma function.

In the special case that the four quantities n, n + α, n + β, and n + α + β are nonnegative integers, the Jacobi polynomial can be written as

P_n^{(\alpha,\beta)}(x)=(n+\alpha)! (n+\beta)! \sum_s \frac{1}{s! (n+\alpha-s)!(\beta+s)!(n-s)!} \left(\frac{x-1}{2}\right)^{n-s} \left(\frac{x+1}{2}\right)^{s}.

 

 

 

 

(1)

The sum extends over all integer values of s for which the arguments of the factorials are nonnegative.

Basic properties

Orthogonality

The Jacobi polynomials satisfy the orthogonality condition

\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x) \; dx =\frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \delta_{nm}, \qquad \alpha,\ \beta > -1.

As defined, they are not orthonormal, the normalization being

P_n^{(\alpha, \beta)} (1) = {n+\alpha\choose n}.

Symmetry relation

The polynomials have the symmetry relation

P_n^{(\alpha, \beta)} (-z) = (-1)^n P_n^{(\beta, \alpha)} (z);

thus the other terminal value is

P_n^{(\alpha, \beta)} (-1) = (-1)^n { n+\beta\choose n}.

Derivatives

The kth derivative of the explicit expression leads to

\frac{\mathrm d^k}{\mathrm d z^k} P_n^{(\alpha,\beta)} (z) = \frac{\Gamma (\alpha+\beta+n+1+k)}{2^k \Gamma (\alpha+\beta+n+1)} P_{n-k}^{(\alpha+k, \beta+k)} (z).

Differential equation

The Jacobi polynomial P(α, β)
n
is a solution of the second order linear homogeneous differential equation[1]

 \left (1-x^2 \right )y'' + ( \beta-\alpha - (\alpha + \beta + 2)x )y' + n(n+\alpha+\beta+1) y = 0.

Recurrence relations

The recurrence relation for the Jacobi polynomials of fixed α,β is:[1]

\begin{align}
&2n (n + \alpha + \beta) (2n + \alpha + \beta - 2) P_n^{(\alpha,\beta)}(z) = \\
&\qquad= (2n+\alpha + \beta-1) \Big\{ (2n+\alpha + \beta)(2n+\alpha+\beta-2) z +  \alpha^2 - \beta^2 \Big\} P_{n-1}^{(\alpha,\beta)}(z) - 2 (n+\alpha - 1) (n + \beta-1) (2n+\alpha + \beta) P_{n-2}^{(\alpha, \beta)}(z),
\end{align}

for n = 2, 3, ....

Since the Jacobi polynomials can be described in terms of the hypergeometric function, recurrences of the hypergeometric function give equivalent recurrences of the Jacobi polynomials. In particular, Gauss' contiguous relations correspond to the identities

\begin{align}
(z-1) \frac{d}{dz} P_n^{(\alpha,\beta)}(z) &= \frac{1}{2} (z-1)(1+\alpha+\beta+n)P_{n-1}^{(\alpha+1,\beta+1)} \\
&= n P_n^{(\alpha,\beta)} - (\alpha+n) P_{n-1}^{(\alpha,\beta+1)} \\
&=(1+\alpha+\beta+n) \left( P_n^{(\alpha,\beta+1)} - P_{n}^{(\alpha,\beta)} \right) \\
&=(\alpha+n) P_n^{(\alpha-1,\beta+1)} - \alpha P_n^{(\alpha,\beta)} \\
&=\frac{2(n+1) P_{n+1}^{(\alpha,\beta-1)} - \left(z(1+\alpha+\beta+n)+\alpha+1+n-\beta \right) P_n^{(\alpha,\beta)}}{1+z} \\
&=\frac{(2\beta+n+nz) P_n^{(\alpha,\beta)} - 2(\beta+n) P_n^{(\alpha,\beta-1)}}{1+z} \\
&=\frac{1-z}{1+z} \left( \beta P_n^{(\alpha,\beta)} - (\beta+n) P_{n}^{(\alpha+1,\beta-1)} \right) \, .
\end{align}

Generating function

The generating function of the Jacobi polynomials is given by

 \sum_{n=0}^\infty P_n^{(\alpha,\beta)}(z) t^n = 2^{\alpha + \beta} R^{-1} (1 - t + R)^{-\alpha} (1 + t + R)^{-\beta},

where

 R = R(z, t) = \left(1 - 2zt + t^2\right)^{\frac{1}{2}}~,

and the branch of square root is chosen so that R(z, 0) = 1.[1]

Asymptotics of Jacobi polynomials

For x in the interior of [−1, 1], the asymptotics of P(α, β)
n
for large n is given by the Darboux formula[1]

P_n^{(\alpha,\beta)}(\cos \theta) = n^{-\frac{1}{2}}k(\theta)\cos (N\theta + \gamma) + O \left (n^{-\frac{3}{2}} \right ),

where

\begin{align}
k(\theta) &= \pi^{-\frac{1}{2}} \sin^{-\alpha-\frac{1}{2}} \tfrac{\theta}{2} \cos^{-\beta-\frac{1}{2}} \tfrac{\theta}{2},\\
N &= n + \tfrac{1}{2} (\alpha+\beta+1),\\
\gamma &= - \tfrac{\pi}{2} \left (\alpha + \tfrac{1}{2} \right ),
\end{align}

and the "O" term is uniform on the interval [ε, π-ε] for every ε > 0.

The asymptotics of the Jacobi polynomials near the points ±1 is given by the Mehler–Heine formula

\begin{align}
\lim_{n \to \infty} n^{-\alpha}P_n^{(\alpha,\beta)}\left(\cos \left ( \tfrac{z}{n} \right ) \right) &= \left(\tfrac{z}{2}\right)^{-\alpha} J_\alpha(z)\\ 
\lim_{n \to \infty} n^{-\beta}P_n^{(\alpha,\beta)}\left(\cos \left (\pi - \tfrac{z}{n} \right) \right) &= \left(\tfrac{z}{2}\right)^{-\beta} J_\beta(z)
\end{align}

where the limits are uniform for z in a bounded domain.

The asymptotics outside [−1, 1] is less explicit.

Applications

Wigner d-matrix

The expression (1) allows the expression of the Wigner d-matrix djm’,m(φ) (for 0 ≤ φ ≤ 4π) in terms of Jacobi polynomials:[4]

d^j_{m'm}(\phi) =\left[ \frac{(j+m)!(j-m)!}{(j+m')!(j-m')!}\right]^{\frac{1}{2}} \left(\sin\tfrac{\phi}{2}\right)^{m-m'} \left(\cos\tfrac{\phi}{2}\right)^{m+m'} P_{j-m}^{(m-m',m+m')}(\cos \phi).

See also

Notes

  1. 1 2 3 4 5 6 Szegő, Gábor (1939). "IV. Jacobi polynomials.". Orthogonal Polynomials. Colloquium Publications. XXIII. American Mathematical Society. ISBN 978-0-8218-1023-1. MR 0372517. The definition is in IV.1; the differential equation in IV.2; Rodrigues' formula is in IV.3; the generating function is in IV.4; the recurrent relation is in IV.5.
  2. Abramowitz, Milton; Stegun, Irene A., eds. (December 1972) [1964]. "Chapter 22". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series 55 (10 ed.). New York, USA: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 561. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642.
  3. P.K. Suetin (2001), "Jacobi_polynomials", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
  4. Biedenharn, L.C.; Louck, J.D. (1981). Angular Momentum in Quantum Physics. Reading: Addison-Wesley.

Further reading

External links

This article is issued from Wikipedia - version of the Thursday, February 11, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.