KH-8 Gambit 3
The KH-8 (BYEMAN codename Gambit-3)[1] was a long-lived series of reconnaissance satellites of the "Key Hole" (KH) series used by the United States from July 1966 to April 1984,[2] and also known as Low Altitude Surveillance Platform.[3] The satellite ejected "film-bucket" canisters of photographic film that were retrieved as they descended through the atmosphere by parachute. Ground resolution of the mature satellite system was better than 4 inches (0.10 m).[4] There were 54 launch attempts of the 3,000 kilogram satellites, all from Vandenberg Air Force Base, on variants of the Titan III rocket. The KH-8 was manufactured by Lockheed. The camera system/satellite was manufactured by Eastman Kodak's A&O Division in Rochester, New York.
The Gambit codename was also used by the satellite's predecessor, the KH-7 Gambit.
Gambit 3 satellites were the same width as the Gambit 1 models, but also slightly longer — reaching about 29 feet (9 m) in length. They carried 12,241 feet (3,731 meters) of film and were designed for longer missions of up to 31 days [5]
Camera Optics Module
The Camera Optics Module of KH-8 consists of four cameras.
The main camera of KH-8B (introduced in 1971) with a focal length of 175.6 in (4.46 m) is a single strip camera, designed to gather high-resolution images of ground targets. In the strip camera the ground image is reflected by a steerable flat mirror to a 1.21 m (48 in) diameter stationary concave primary mirror. The primary mirror reflects the light through an opening in the flat mirror and through a Ross corrector. At periapsis altitude of 75 nautical miles, the main camera imaged a 6.3 km wide ground swath on a 8.811 in (223.8 mm) wide moving portion of film through a small slit aperture, resulting in an image scale of 28 meter / millimeter.[6][7] The Astro-Position Terrain Camera (APTC) contains three cameras: a 75mm focal length terrain frame camera, and two 90mm focal length stellar cameras. The terrain frame camera takes exposures of Earth in direction of the vehicle roll position for attitude determination. The stellar cameras observed in 180 degree opposite directions and took images of star fields.[6]
The films used by GAMBIT were provided by Eastman Kodak, and evolved through a series of successively higher definition films, starting with Type 3404 with a resolving power of 50 to 100 line pairs per mm.[8] Subsequent films used were Type 1414 high-definition film, SO-217 high-definition fine-grain film, and a series of films with silver-halide crystals of very uniform size and shape. The size of silver-halide crystals decreased from 1,550 angstrom in film Type SO-315, to 1,200 angstrom in SO-312, and ultimately to 900 angstrom in SO-409.[4] Under optimal conditions GAMBIT would thus have been able to record ground features as small as 0.28 m to 0.56 m (1 ft to 2 ft) using the Eastman Kodak Type 3404 film. Using a film with a resolving power equivalent to the Kodak's Type 3409 film of 320 to 630 line pairs per mm, GAMBIT would have been able to record ground features as small as 5 cm to 10 cm (2" to 4") .[9] The initial September 2011 release of "The Gambit Story" quotes "The mature system produced examples of imagery better than four inches ground-resolution distance". This number was again redacted in a later release.[4] Five to ten centimeters corresponds to the resolution limit imposed by atmospheric turbulence as derived by Fried[10] and, independently, Evvard[11] in the mid-1960s; remarkably, GAMBIT had reached a physical limit on resolution only a few years after the US launched its first reconnaissance satellite. GAMBIT was also able to record objects in orbit. The capability was developed to photograph Soviet spacecraft, but was first used to aid NASA engineers designing repairs for the damaged Skylab space station in 1973.[12]
Missions
Name | Block[13] | Launch Date | Alt. Name | NSSDC ID No. | Launch Vehicle | Orbit | Decay date |
---|---|---|---|---|---|---|---|
KH8-1 | I | 1966-07-29 | OPS-3014 | 1966-069A | Titan IIIB | 158.0 km × 250.0 km, i=94.1° | 1966-08-06[14] |
KH8-2 | I | 1966-09-28 | OPS-4096 | 1966-086A | Titan IIIB | ||
KH8-3 | I | 1966-12-14 | OPS-8968 | 1966-113A | Titan IIIB | ||
KH8-4 | I | 1967-02-24 | OPS-4204 | 1967-016A | Titan IIIB | ||
KH8-5 | I | 1967-04-26 | OPS-4243 | 1967-F04, 1967-003X | Titan IIIB | no stable orbit | 1967-04-26 |
KH8-6 | I | 1967-06-20 | OPS-4282 | 1967-064A | Titan IIIB | ||
KH8-7 | I | 1967-08-16 | OPS-4886 | 1967-079A | Titan IIIB | ||
KH8-8 | I | 1967-09-19 | OPS-4941 | 1967-090A | Titan IIIB | ||
KH8-9 | I | 1967-10-25 | OPS-4995 | 1967-103A | Titan IIIB | ||
KH8-10 | I | 1967-12-05 | OPS-5000 | 1967-121A | Titan IIIB | ||
KH8-11 | I | 1968-01-18 | OPS-5028 | 1968-005A | Titan IIIB | ||
KH8-12 | I | 1968-03-13 | OPS-5057 | 1968-018A | Titan IIIB | ||
KH8-13 | I | 1968-04-17 | OPS-5105 | 1968-031A | Titan IIIB | ||
KH8-14 | I | 1968-06-05 | OPS-5138 | 1968-047A | Titan IIIB | ||
KH8-15 | I | 1968-08-06 | OPS-5187 | 1968-064A | Titan IIIB | ||
KH8-16 | I | 1968-09-10 | OPS-5247 | 1968-074A | Titan IIIB | ||
KH8-17 | I | 1968-11-06 | OPS-5296 | 1968-099A | Titan IIIB | ||
KH8-18 | I | 1968-12-04 | OPS-6518 | 1968-108A | Titan IIIB | ||
KH8-19 | I | 1969-01-22 | OPS-7585 | 1969-007A | Titan IIIB | ||
KH8-20 | I | 1969-03-04 | OPS-4248 | 1969-019A | Titan IIIB | ||
KH8-21 | I | 1969-04-15 | OPS-5310 | 1969-039A | Titan IIIB | ||
KH8-22 | I | 1969-06-03 | OPS-1077 | 1969-050A | Titan IIIB | ||
KH8-23 | II | 1969-08-23 | OPS-7807 | 1969-074A | Titan 23B | ||
KH8-24 | II | 1969-10-24 | OPS-8455 | 1969-095A | Titan 23B | ||
KH8-25 | II | 1970-01-14 | OPS-6531 | 1970-002A | Titan 23B | ||
KH8-26 | II | 1970-04-15 | OPS-2863 | 1970-031A | Titan 23B | ||
KH8-27 | II | 1970-06-25 | OPS-6820 | 1970-048A | Titan 23B | ||
KH8-28 | II | 1970-08-18 | OPS-7874 | 1970-061A | Titan 23B | ||
KH8-29 | II | 1970-10-23 | OPS-7568 | 1970-090A | Titan 23B | ||
KH8-30 | II | 1971-01-21 | OPS-7776 | 1971-005A | Titan 23B | 139.0 km × 418.0 km, i=110.8° | 1971-02-09[15] |
KH8-31 | II | 1971-04-22 | OPS-7899 | 1971-033A | Titan 23B | 132.0 km × 401.0 km, i=110.9° | 1971-05-13[16] |
KH8-32 | II | 1971-08-12 | OPS-8607 | 1971-070A | Titan 24B | 137.0 km × 424.0 km, i=111.0° | 1971-09-03[17] |
KH8-33 | II | 1971-10-23 | OPS-7616 | 1971-092A | Titan 24B | 134.0 km × 416.0 km, i=110.9° | 1971-11-17[18] |
KH8-34 | II | 1972-03-17 | OPS-1678 | 1972-016A | Titan 24B | 131.0 km × 409.0 km, i=111.0° | 1972-04-11[19] |
KH8-35 | II | 1972-05-20 | OPS-6574 | 1972-F03 | Titan 24B | failed to reach orbit | |
KH8-36 | II | 1972-09-01 | OPS-8888 | 1972-068A | Titan 24B | 140.0 km × 380.0 km, i=110.5° | 1972-09-30[20] |
KH8-37 | III | 1972-12-21 | OPS-3978 | 1972-103A | Titan 24B | 139.0 km × 378.0 km, i=110.5° | 1973-01-23[21] |
KH8-38 | III | 1973-05-16 | OPS-2093 | 1973-028A | Titan 24B | 139.0 km × 399.0 km, i=110.5° | 1973-06-13[22] |
KH8-39 | III | 1973-06-26 | OPS-4018 | 1973-F04 | Titan 24B | failed to reach orbit | (mix-up with KH8-38 in NSSDC) |
KH8-40 | III | 1973-09-27 | OPS-6275 | 1973-068A | Titan 24B | 131.0 km × 385.0 km, i=110.5° | 1973-10-29[23] |
KH8-41 | III | 1974-02-13 | OPS-6889 | 1974-007A | Titan 24B | 134.0 km × 393.0 km, i=110.4° | 1974-03-17[24] |
KH8-42 | III | 1974-06-06 | OPS-1776 | 1974-042A | Titan 24B | 136.0 km × 394.0 km, i=110.5° | 1974-07-24[25] |
KH8-43 | III | 1974-08-14 | OPS-3004 | 1974-065A | Titan 24B | 135.0 km × 402.0 km, i=110.5° | 1974-09-29[26] |
KH8-44 | III | 1975-04-18 | OPS-4883 | 1975-032A | Titan 24B | 134.0 km × 401.0 km, i=110.5° | 1975-06-05[27] |
KH8-45 | III | 1975-10-09 | OPS-5499 | 1975-098A | Titan 24B | 125.0 km × 356.0 km, i=96.4° | 1975-11-30[28] |
KH8-46 | III | 1976-03-22 | OPS-7600 | 1976-027A | Titan 24B | 125.0 km × 347.0 km, i=96.4° | 1976-05-18[29] |
KH8-47 | III | 1976-09-15 | OPS-8533 | 1976-094A | Titan 24B | 135.0 km × 330.0 km, i=96.4° | 1976-11-05[30] |
KH8-48 | IV | 1977-03-13 | OPS-4915 | 1977-019A | Titan 24B | 124.0 km × 348.0 km, i=96.4° | 1977-05-26[31] |
KH8-49 | IV | 1977-09-23 | OPS-7471 | 1977-094A | Titan 24B | 125.0 km × 352.0 km, i=96.5° | 1977-12-08[32] |
KH8-50 | IV | 1979-05-28 | OPS-7164 | 1979-044A | Titan 24B | 124.0 km × 305.0 km, i=96.4° | 1979-08-26[33] |
KH8-51 | IV | 1981-02-28 | OPS-1166 | 1981-019A | Titan 24B | 138.0 km × 336.0 km, i=96.4° | 1981-06-20[34] |
KH8-52 | IV | 1982-01-21 | OPS-2849 | 1982-006A | Titan 24B | 630.0 km × 641.0 km, i=97.4° | 1982-05-23[35] |
KH8-53 | IV | 1983-04-15 | OPS-2925 | 1983-032A | Titan 24B | 124.0 km × 254.0 km, i=96.5° | 1983-08-21[36] |
KH8-54 | IV | 1984-04-17 | OPS-8424 | 1984-039A | Titan 24B | 127.0 km × 235.0 km, i=96.4° | 1984-08-13[37] |
(NSSDC ID Numbers: See COSPAR)
Cost
The total cost of the 54 flight KH-8 program from FY1964 to FY1985, without non-recurring costs, was US$2.3 billion in respective year dollars.[13]
Other U.S. imaging spy satellites
- Corona series: KH-1, KH-2, KH-3, KH-4
- KH-5 ARGON, KH-6 LANYARD
- KH-7 Gambit and KH-8 GAMBIT
- KH-9 Hexagon "Big Bird"
- MOL—KH-10
- KH-11 Kennan, Misty (classified project), Enhanced Imaging System
References
- Mark Wade (August 9, 2003). KH-8. Encyclopedia Astronautica. Accessed April 23, 2004.
- KH-8 Gambit. GlobalSecurity.org
- ↑ "GAMBIT 3 (KH-8) Fact Sheet" (PDF). US National Reconnaissance Office. Retrieved 18 September 2011.
- ↑ Richelson, Jeffrey (1987). American espionage and the Soviet target. W. Morrow. p. 195. ISBN 978-0-688-06753-3.
- ↑ Global Security Space Systems IMINT Overview LASP
- 1 2 3 "The GAMBIT Story". National Reconnaissance Office. June 1991.
- ↑ "Declassified US Spy Satellites from Cold War Land in Ohio". SPACE.com. Retrieved 2015-10-11.
- 1 2 "KH-8 Camera System". National Reconnaissance Office. 1970.
- ↑ Day, Dwayne A. (2010-11-29). "Ike’s gambit: The development and operations of the KH-7 and KH-8 spy satellites". www.thespacereview.com. Retrieved 2009-01-25.
- ↑ "KODAK PLUS-X AERECON II Film 3404" (PDF). Kodak. 2005-11-28.
- ↑ "KODAK AERECON High Altitude Film 3409" (PDF). Kodak. 2005-11-28.
- ↑ Fried, David (1966). "Limiting Resolution Looking Down Through the Atmosphere". Journal of the Optical Society of America 56 (10): 1380–1384. doi:10.1364/josa.56.001380. Retrieved 2015-06-18.
- ↑ Evvard, John (1 December 1968). "Atmospheric Turbulence Limits on the Observational Capabilities of Aerospacecraft". NASA Technical Note. NASA-TN-D-4940. Retrieved 18 June 2015.
- ↑ Day, Dwayne Allen (2012-06-11). "Out of the black". The Space Review. Retrieved June 11, 2012.
- 1 2 "The GAMBIT story". National Reconnaissance Office. June 1991.
- ↑ "KH 8-01". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-30". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-31". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-32". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-33". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-34". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-36". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-37". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-38". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-40". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-41". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-42". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-43". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-44". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-45". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-46". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-47". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-48". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-49". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-50". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-51". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-52". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-53". NASA National Space Science Data Center. 2010-10-08.
- ↑ "KH 8-54". NASA National Space Science Data Center. 2010-10-08.
|
|