D. R. Kaprekar

Dattaraya Ramchandra Kaprekar
d.r
Born (1905-01-17)17 January 1905
Dahanu, Maharashtra
Died 1986 (aged 8081)
Devlali, Maharashtra
Nationality Indian
Occupation School teacher
Known for Results in recreational mathematics

Dattaraya Ramchandra Kaprekar (1905–1986) was an Indian recreational mathematician who described several classes of natural numbers including the Kaprekar, Harshad and Self numbers and discovered the Kaprekar constant, named after him. Despite having no formal postgraduate training and working as a schoolteacher, he published extensively and became well known in recreational mathematics circles.[1]

Biography

Kaprekar received his secondary school education in Thane and studied at Fergusson College in Pune. In 1927 he won the Wrangler R. P. Paranjpe Mathematical Prize for an original piece of work in mathematics.[2]

He attended the University of Mumbai, receiving his bachelor's degree in 1929. Having never received any formal postgraduate training, for his entire career (1930–1962) he was a schoolteacher at Nashik in Maharashtra, India. He published extensively, writing about such topics as recurring decimals, magic squares, and integers with special properties. He is also known as "Ganitanand" (गणितानंद)

Discoveries

Working largely alone, Kaprekar discovered a number of results in number theory and described various properties of numbers.[3] In addition to the Kaprekar constant and the Kaprekar numbers which were named after him, he also described self numbers or Devlali numbers, the Harshad numbers and Demlo numbers. He also constructed certain types of magic squares related to the Copernicus magic square.[4] Initially his ideas were not taken seriously by Indian mathematicians, and his results were published largely in low-level mathematics journals or privately published, but international fame arrived when Martin Gardner wrote about Kaprekar in his March 1975 column of Mathematical Games for Scientific American. Today his name is well-known and many other mathematicians have pursued the study of the properties he discovered.[1]

Kaprekar constant

Main article: Kaprekar constant

In 1949, Kaprekar discovered an interesting property of the number 6174, which was subsequently named the Kaprekar constant.[5] He showed that 6174 is reached in the limit as one repeatedly subtracts the highest and lowest numbers that can be constructed from a set of four digits that are not all identical. Thus, starting with 1234, we have

4321 − 1234 = 3087, then
8730 − 0378 = 8352, and
8532 − 2358 = 6174.

Repeating from this point onward leaves the same number (7641 − 1467 = 6174). In general, when the operation converges it does so in at most seven iterations.

A similar constant for 3 digits is 495.[6] However, in base 10 a single such constant only exists for numbers of 3 or 4 digits; for more digits (or 2), the numbers enter into one of several cycles.[7]

Kaprekar number

Main article: Kaprekar number

Another class of numbers Kaprekar described are the Kaprekar numbers.[8] A Kaprekar number is a positive integer with the property that if it is squared, then its representation can be partitioned into two positive integer parts whose sum is equal to the original number (e.g. 45, since 452=2025, and 20+25=45, also 9, 55, 99 etc.) However, note the restriction that the two numbers are positive; for example, 100 is not a Kaprekar number even though 1002=10000, and 100+00 = 100. This operation, of taking the rightmost digits of a square, and adding it to the integer formed by the leftmost digits, is known as the Kaprekar operation.

Some examples of Kaprekar numbers in base 10, besides the numbers 9, 99, 999, …, are (sequence A006886 in OEIS):

Number Square Decomposition
703 703² = 494209 494+209 = 703
2728 2728² = 7441984 744+1984 = 2728
5292 5292² = 28005264 28+005264 = 5292
857143 857143² = 734694122449 734694+122449 = 857143

Devlali or Self number

Main article: Self number

In 1963, Kaprekar defined the property which has come to be known as self numbers,[9] which are integers that cannot be generated by taking some other number and adding its own digits to it. For example, 21 is not a self number, since it can be generated from 15: 15 + 1 + 5 = 21. But 20 is a self number, since it cannot be generated from any other integer. He also gave a test for verifying this property in any number. These are sometimes referred to as Devlali numbers (after the town where he lived); though this appears to have been his preferred designation,[9] the term self number is more widespread. Sometimes these are also designated Colombian numbers after a later designation.

Harshad number

Main article: Harshad number

Kaprekar also described the Harshad numbers which he named harshad, meaning "giving joy" (Sanskrit harsha, joy +da taddhita pratyaya, causative); these are defined by the property that they are divisible by the sum of their digits. Thus 12, which is divisible by 1 + 2 = 3, is a Harshad number. These were later also called Niven numbers after a 1977 lecture on these by the Canadian mathematician Ivan M. Niven. Numbers which are Harshad in all bases (only 1, 2, 4, and 6) are called all-Harshad numbers. Much work has been done on Harshad numbers, and their distribution, frequency, etc. are a matter of considerable interest in number theory today.

Demlo number

Kaprekar also studied the Demlo numbers, named after a train station 30 miles from Bombay on the then G. I. P. Railway where he had the idea of studying them.[1] These are the numbers 1, 121, 12321, …, which are the squares of the repunits 1, 11, 111, ….[10]

References

  1. 1 2 3 O'Connor, John J.; Robertson, Edmund F., "D. R. Kaprekar", MacTutor History of Mathematics archive, University of St Andrews.
  2. Dilip M. Salwi (24 January 2005). "Dattaraya Ramchandra Kaprekar". Retrieved 30 November 2007.
  3. Athmaraman, R. (2004). The Wonder World of Kaprekar Numbers. Chennai (India): The Association of Mathematics Teachers of India.
  4. Kaprekar, D. R. (1974). "The Copernicus Magic Square". Indian Journal of History of Science 9 (1).
  5. Kaprekar, D. R. (1949). "Another Solitaire Game". Scripta Mathematica 15: 244–245.
  6. An informal proof of the property for three digits
  7. "Mysterious number 6174" in Plus Magazine
  8. Weisstein, Eric W., "Kaprekar Number", MathWorld.
  9. 1 2 Kaprekar, D. R. The Mathematics of New Self-Numbers Devalali (1963)nn: 19–20
  10. Weisstein, Eric W., "Demlo Number", MathWorld.

External links

This article is issued from Wikipedia - version of the Saturday, February 13, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.