Kasner metric

The Kasner metric, developed by and named for the American mathematician Edward Kasner, is an exact solution to Einstein's theory of general relativity. It describes an anisotropic universe without matter (i.e., it is a vacuum solution). It can be written in any spacetime dimension D>3 and has strong connections with the study of gravitational chaos.

Metric and conditions

The metric in D>3 spacetime dimensions is

\text{d}s^2 = -\text{d}t^2 + \sum_{j=1}^{D-1} t^{2p_j} [\text{d}x^j]^2,

and contains D-1 constants p_j, called the Kasner exponents. The metric describes a spacetime whose equal-time slices are spatially flat, however space is expanding or contracting at different rates in different directions, depending on the values of the p_j. Test particles in this metric whose comoving coordinate differs by \Delta x^j are separated by a physical distance t^{p_j}\Delta x^j.

The Kasner metric is an exact solution to Einstein's equations in vacuum when the Kasner exponents satisfy the following Kasner conditions,

\sum_{j=1}^{D-1} p_j = 1,
\sum_{j=1}^{D-1} p_j^2 = 1.

The first condition defines a plane, the Kasner plane, and the second describes a sphere, the Kasner sphere. The solutions (choices of p_j) satisfying the two conditions therefore lie on the sphere where the two intersect (sometimes confusingly also called the Kasner sphere). In D spacetime dimensions, the space of solutions therefore lie on a D-3 dimensional sphere S^{D-3}.

Features

There are several noticeable and unusual features of the Kasner solution:

\sqrt{-g} = t^{p_1 + p_2 + \cdots + p_{D-1}} = t
where we have used the first Kasner condition. Therefore t\to 0 can describe either a Big Bang or a Big Crunch, depending on the sense of t
\sum_{j=1}^{D-1} p_j^2 = \frac{1}{D-1} \ne 1.
The FLRW metric employed in cosmology, by contrast, is able to expand or contract isotropically because of the presence of matter.

See also

References

    This article is issued from Wikipedia - version of the Wednesday, March 23, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.