Kleene's algorithm

In theoretical computer science, in particular in formal language theory, Kleene's algorithm transforms a given deterministic finite automaton (DFA) into a regular expression. Together with other conversion algorithms, it establishes the equivalence of several description formats for regular languages.

Algorithm description

According to Gross and Yellen (2004),[1] the algorithm can be traced back to Kleene (1956).[2]

This description follows Hopcroft and Ullman (1979).[3] Given a deterministic finite automaton M = (Q, Σ, δ, q0, F), with Q = { q0,...,qn } its set of states, the algorithm computes

the sets Rk
ij
of all strings that take M from state qi to qj without going through any state numbered higher than k.

Here, "going through a state" means entering and leaving it, so both i and j may be higher than k, but no intermediate state may. Each set Rk
ij
is represented by a regular expression; the algorithm computes them step by step for k = -1, 0, ..., n. Since there is no state numbered higher than n, the regular expression Rn
0j
represents the set of all strings that take M from its start state q0 to qj. If F = { q1,...,qf } is the set of accept states, the regular expression Rn
01
| ... | Rn
0f
represents the language accepted by M.

The initial regular expressions, for k = -1, are computed as

R-1
ij
= a1 | ... | am       if ij, where δ(qi,a1) = ... = δ(qi,am) = qj
R-1
ij
= a1 | ... | am | ε, if i=j, where δ(qi,a1) = ... = δ(qi,am) = qj

After that, in each step the expressions Rk
ij
are computed from the previous ones by

Rk
ij
= Rk-1
ik
(Rk-1
kk
)* Rk-1
kj
| Rk-1
ij

Example

Example DFA given to Kleene's algorithm

The automaton shown in the picture can be described as M = (Q, Σ, δ, q0, F) with

Kleene's algorithm computes the initial regular expressions as

R-1
00
   
= a | ε
R-1
01
= b
R-1
02
= ∅
R-1
10
= ∅
R-1
11
= b | ε
R-1
12
= a
R-1
20
= ∅
R-1
21
= a | b
R-1
22
= ε

After that, the Rk
ij
are computed from the Rk-1
ij
step by step for k = 0, 1, 2. Kleene algebra equalities are used to simplify the regular expressions as much as possible.

Step 0:

R0
00
   
= R-1
00
(R-1
00
)* R-1
00
| R-1
00
   
= (a | ε) (a | ε)* (a | ε) | a | ε     = a*
R0
01
= R-1
00
(R-1
00
)* R-1
01
| R-1
01
= (a | ε) (a | ε)* b | b = a* b
R0
02
= R-1
00
(R-1
00
)* R-1
02
| R-1
02
= (a | ε) (a | ε)* | ∅ = ∅
R0
10
= R-1
10
(R-1
00
)* R-1
00
| R-1
10
= ∅ (a | ε)* (a | ε) | ∅ = ∅
R0
11
= R-1
10
(R-1
00
)* R-1
01
| R-1
11
= ∅ (a | ε)* b | b | ε = b | ε
R0
12
= R-1
10
(R-1
00
)* R-1
02
| R-1
12
= ∅ (a | ε)* | a = a
R0
20
= R-1
20
(R-1
00
)* R-1
00
| R-1
20
= ∅ (a | ε)* (a | ε) | ∅ = ∅
R0
21
= R-1
20
(R-1
00
)* R-1
01
| R-1
21
= ∅ (a | ε)* b | a | b = a | b
R0
22
= R-1
20
(R-1
00
)* R-1
02
| R-1
22
= ∅ (a | ε)* | ε = ε

Step 1:

R1
00
   
= R0
01
(R0
11
)* R0
10
| R0
00
   
= a*b (b | ε)* | a*         = a*
R1
01
= R0
01
(R0
11
)* R0
11
| R0
01
= a*b (b | ε)* (b | ε) | a* b = a* b* b
R1
02
= R0
01
(R0
11
)* R0
12
| R0
02
= a*b (b | ε)* a | ∅ = a* b* ba
R1
10
= R0
11
(R0
11
)* R0
10
| R0
10
= (b | ε) (b | ε)* | ∅ = ∅
R1
11
= R0
11
(R0
11
)* R0
11
| R0
11
= (b | ε) (b | ε)* (b | ε) | b | ε = b*
R1
12
= R0
11
(R0
11
)* R0
12
| R0
12
= (b | ε) (b | ε)* a | a = b* a
R1
20
= R0
21
(R0
11
)* R0
10
| R0
20
= (a | b) (b | ε)* | ∅ = ∅
R1
21
= R0
21
(R0
11
)* R0
11
| R0
21
= (a | b) (b | ε)* (b | ε) | a | b = (a | b) b*
R1
22
= R0
21
(R0
11
)* R0
12
| R0
22
= (a | b) (b | ε)* a | ε = (a | b) b* a | ε

Step 2:

R2
00
   
= R1
02
(R1
22
)* R1
20
| R1
00
   
= a*b*ba ((a|b)b*a | ε)* | a* = a*
R2
01
= R1
02
(R1
22
)* R1
21
| R1
01
= a*b*ba ((a|b)b*a | ε)* (a|b)b* | a* b* b =
R2
02
= R1
02
(R1
22
)* R1
22
| R1
02
= a*b*ba ((a|b)b*a | ε)* ((a|b)b*a | ε) | a* b* ba =
R2
10
= R1
12
(R1
22
)* R1
20
| R1
10
= b* a ((a|b)b*a | ε)* | ∅ = ∅
R2
11
= R1
12
(R1
22
)* R1
21
| R1
11
= b* a ((a|b)b*a | ε)* (a|b)b* | b* =
R2
12
= R1
12
(R1
22
)* R1
22
| R1
12
= b* a ((a|b)b*a | ε)* ((a|b)b*a | ε) | b* a =
R2
20
= R1
22
(R1
22
)* R1
20
| R1
20
= ((a|b)b*a | ε) ((a|b)b*a | ε)* | ∅ = ∅
R2
21
= R1
22
(R1
22
)* R1
21
| R1
21
= ((a|b)b*a | ε) ((a|b)b*a | ε)* (a|b)b* | (a | b) b* =
R2
22
= R1
22
(R1
22
)* R1
22
| R1
22
= ((a|b)b*a | ε) ((a|b)b*a | ε)* ((a|b)b*a | ε) | (a | b) b* a | ε     =

((step 2 simplification to be completed))

Since q0 is the start state and q1 is the only accept state, the regular expression R2
01
denotes the set of all strings accepted by the automaton.

See also

References

  1. Jonathan L. Gross and Jay Yellen, ed. (2004). Handbook of Graph Theory. Discrete Mathematics and it Applications. CRC Press. ISBN 1-58488-090-2. Here: sect.2.1, remark R13 on p.65
  2. Kleene, Stephen C. (1956). "Representation of Events in Nerve Nets and Finite Automate" (PDF). Automata Studies, Annals of Math. Studies (Princeton Univ. Press) 34.
  3. John E. Hopcroft, Jeffrey D. Ullman (1979). Introduction to Automata Theory, Languages, and Computation. Addison-Wesley. ISBN 0-201-02988-X. Here: Theorem 2.4, p.33-34
This article is issued from Wikipedia - version of the Friday, January 22, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.