Kummer's function

In mathematics, there are several functions known as Kummer's function. One is known as the confluent hypergeometric function of Kummer. Another one, defined below, is related to the polylogarithm. Both are named for Ernst Kummer.

Kummer's function is defined by

\Lambda_n(z)=\int_0^z \frac{\log^{n-1}|t|}{1+t}\;dt.

The duplication formula is

\Lambda_n(z)+\Lambda_n(-z)= 2^{1-n}\Lambda_n(-z^2).

Compare this to the duplication formula for the polylogarithm:

\operatorname{Li}_n(z)+\operatorname{Li}_n(-z)= 2^{1-n}\operatorname{Li}_n(z^2).

An explicit link to the polylogarithm is given by

\operatorname{Li}_n(z)=\operatorname{Li}_n(1)\;\;+\;\;
\sum_{k=1}^{n-1} (-)^{k-1} \;\frac{\log^k |z|} {k!} \;\operatorname{Li}_{n-k} (z) \;\;+\;\;
\frac{(-)^{n-1}}{(n-1)!} \;\left[ \Lambda_n(-1) - \Lambda_n(-z) \right].

References

This article is issued from Wikipedia - version of the Thursday, March 07, 2013. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.